Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 12(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36143402

ABSTRACT

The stable isotope composition of soluble and insoluble organic compounds in carbonaceous chondrites can be used to determine the provenance of organic molecules in space. Deuterium enrichment in meteoritic organics could be a residual signal of synthetic reactions occurring in the cold interstellar medium or an indicator of hydrothermal parent-body reactions. δD values have been measured in grains and bulk samples for a wide range of meteorites; however, these reservoirs are highly variable and may have experienced fractionation during thermal and/or aqueous alteration. Among the plethora of organic compounds in meteorites are polycyclic aromatic hydrocarbons (PAHs), which are stable and abundant in carbonaceous chondrites, and their δD ratio may preserve evidence about their formation environment as well as the influence of parent-body processes. This study tests hypotheses about the potential links between PAHs-deuteration concentrations and their formation conditions by examining the δD ratio of PAHs in three CM carbonaceous chondrites representing an aqueous alteration gradient. We use deuterium enrichments in soluble 2-5-ring PAHs as an indicator of either photon-driven deuteration due to unimolecular photodissociation in warm regions of space, gas-phase ion-molecule reactions in cold interstellar regions of space, or UV photolysis in ices. We also test hypothesized reaction pathways during parent-body processing that differ between partially and fully aromatized PAHs. New methodological approaches were developed to extract small, volatile PAHs without fractionation. Our results suggest that meteoritic PAHs could have formed through reactions in cold regions, with possible overprinting of deuterium enrichment during aqueous parent-body alteration, but the data could not rule out PAH alteration in icy mantles as well.

2.
Science ; 370(6517)2020 11 06.
Article in English | MEDLINE | ID: mdl-33033153

ABSTRACT

Asteroid (101955) Bennu is a dark asteroid on an Earth-crossing orbit that is thought to have assembled from the fragments of an ancient collision. We use spatially resolved visible and near-infrared spectra of Bennu to investigate its surface properties and composition. In addition to a hydrated phyllosilicate band, we detect a ubiquitous 3.4-micrometer absorption feature, which we attribute to a mix of organic and carbonate materials. The shape and depth of this absorption feature vary across Bennu's surface, spanning the range seen among similar main-belt asteroids. The distribution of the absorption feature does not correlate with temperature, reflectance, spectral slope, or hydrated minerals, although some of those characteristics correlate with each other. The deepest 3.4-micrometer absorptions occur on individual boulders. The variations may be due to differences in abundance, recent exposure, or space weathering.

3.
Chem Rev ; 120(11): 4616-4659, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32227889

ABSTRACT

Despite the generally hostile nature of the environments involved, chemistry does occur in space. Molecules are seen in environments that span a wide range of physical and chemical conditions and that clearly were created by a multitude of chemical processes, many of which differ substantially from those associated with traditional equilibrium chemistry. The wide range of environmental conditions and processes involved with chemistry in space yields complex populations of materials, and because the elements H, C, O, and N are among the most abundant in the universe, many of these are organic in nature, including some of direct astrobiological interest. Much of this chemistry occurs in "dense" interstellar clouds and protostellar disks surrounding forming stars because these environments have higher relative densities and more benign radiation fields than in stellar ejectae or the diffuse interstellar medium. Because these are the environments in which new planetary systems form, some of the chemical species made in these environments are expected to be delivered to the surfaces of planets where they can potentially play key roles in the origin of life. Because these chemical processes are universal and should occur in these environments wherever they are found, this implies that some of the starting materials for life are likely to be widely distributed throughout the universe.


Subject(s)
Evolution, Chemical , Exobiology , Extraterrestrial Environment/chemistry , Meteoroids
4.
Astrobiology ; 20(5): 601-616, 2020 05.
Article in English | MEDLINE | ID: mdl-32105506

ABSTRACT

Numerous laboratory studies of astrophysical ice analogues have shown that their exposure to ionizing radiation leads to the production of large numbers of new, more complex compounds, many of which are of astrobiological interest. We show here that the irradiation of astrophysical ice analogues containing H2O, CH3OH, CO, and NH3 yields quantities of hexamethylenetetramine-methanol (hereafter HMT-methanol; C7N4H14O) that are easily detectible in the resulting organic residues. This molecule differs from simple HMT, which is known to be abundant in similar ice photolysis residues, by the replacement of a peripheral H atom with a CH2OH group. As with HMT, HMT-methanol is likely to be an amino acid precursor. HMT has tetrahedral (Td) symmetry, whereas HMT-methanol has C1 symmetry. We report the computed expected infrared spectra for HMT and HMT-methanol obtained using ab initio quantum chemistry methods and show that there is a good match between the observed and computed spectra for regular HMT. Since HMT-methanol lacks the high symmetry of HMT, it produces rotational transitions that could be observed at longer wavelengths, although establishing the exact positions of these transitions may be challenging. It is likely that HMT-methanol represents an abundant member of a larger family of functionalized HMT molecules that may be present in cold astrophysical environments.


Subject(s)
Exobiology , Extraterrestrial Environment , Methanol/analysis , Methenamine/analysis , Methenamine/chemistry , Vibration
5.
Nat Commun ; 9(1): 5276, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30563961

ABSTRACT

Sugars and their derivatives are essential to all terrestrial life. Their presence in meteorites, together with amino acids, nucleobases, amphiphiles, and other compounds of biological importance, may have contributed to the inventory of organics that played a role in the emergence of life on Earth. Sugars, including ribose (the sugar of RNA), and other sugar derivatives have been identified in laboratory experiments simulating photoprocessing of ices under astrophysical conditions. In this work, we report the detection of 2-deoxyribose (the sugar of DNA) and several deoxysugar derivatives in residues produced from the ultraviolet irradiation of ice mixtures consisting of H2O and CH3OH. The detection of deoxysugar derivatives adds to the inventory of compounds of biological interest that can form under astrophysical conditions and puts constraints on their abiotic formation pathway. Finally, we report that some of the deoxysugar derivatives found in our residues are also newly identified in carbonaceous meteorites.

6.
Astrobiology ; 17(8): 761-770, 2017 08.
Article in English | MEDLINE | ID: mdl-28723229

ABSTRACT

Nucleobases are the informational subunits of RNA and DNA and are essential to all known forms of life. The nucleobases can be divided into two groups of molecules: the pyrimidine-based compounds that include uracil, cytosine, and thymine, and the purine-based compounds that include adenine and guanine. Previous work in our laboratory has demonstrated that uracil, cytosine, thymine, and other nonbiological, less common nucleobases can form abiotically from the UV photoirradiation of pyrimidine in simple astrophysical ice analogues containing combinations of H2O, NH3, and CH4. In this work, we focused on the UV photoirradiation of purine mixed with combinations of H2O and NH3 ices to determine whether or not the full complement of biological nucleobases can be formed abiotically under astrophysical conditions. Room-temperature analyses of the resulting photoproducts resulted in the detection of adenine, guanine, and numerous other functionalized purine derivatives. Key Words: Pyrimidine-Nucleobases-Interstellar; Ices-Cometary; Ices-Molecular processes-Prebiotic chemistry. Astrobiology 17, 761-770.


Subject(s)
Purine Nucleosides , Purines , Ultraviolet Rays , Exobiology , Ice , Thymine , Uracil
7.
J Chem Phys ; 144(14): 144308, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27083722

ABSTRACT

Nucleobases are the carriers of the genetic information in ribonucleic acid and deoxyribonucleic acid (DNA) for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H2O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantum chemical studies confirmed that the reaction pathways were favorable provided that several H2O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H2O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth and have implications for the role of thymine and DNA in the origin of life.


Subject(s)
Evolution, Chemical , Origin of Life , Thymine/chemistry , Thymine/chemical synthesis , Quantum Theory
8.
Elements (Que) ; 12(3): 185-189, 2016.
Article in English | MEDLINE | ID: mdl-29422977

ABSTRACT

Organics are observed to be a significant component of cosmic dust in nearly all environments were dust is observed. In many cases only remote telescope observations of these materials are obtainable and our knowledge of the nature of these materials is very basic. However, it is possible to obtain actual samples of extraterrestrial dust in the Earth's stratosphere, in Antarctic ice and snow, in near-Earth orbit, and via spacecraft missions to asteroids and comets. It is clear that cosmic dust contains a diverse population of organic materials that owe their origins to a variety of chemical processes occurring in many different environments. The presence of isotopic enrichments of D and 15N suggests that many of these organic materials have an interstellar/protosolar heritage. The study of these samples is of considerable importance since they are the best preserved materials of the early Solar System available.

9.
Astrophys J ; 812(2)2015 Oct 20.
Article in English | MEDLINE | ID: mdl-32020918

ABSTRACT

Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N2-, CH4-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N2, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ~ 0.9 and O/C ~ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.

10.
Top Curr Chem ; 356: 123-64, 2015.
Article in English | MEDLINE | ID: mdl-24500331

ABSTRACT

Laboratory experiments have shown that the UV photo-irradiation of low-temperature ices of astrophysical interest leads to the formation of organic molecules, including molecules important for biology such as amino acids, quinones, and amphiphiles. When pyrimidine is introduced into these ices, the products of irradiation include the nucleobases uracil, cytosine, and thymine, the informational sub-units of DNA and RNA, as well as some of their isomers. The formation of these compounds, which has been studied both experimentally and theoretically, requires a succession of additions of OH, NH2, and CH3groups to pyrimidine. Results show that H2O ice plays key roles in the formation of the nucleobases, as an oxidant, as a matrix in which reactions can take place, and as a catalyst that assists proton abstraction from intermediate compounds. As H2O is also the most abundant icy component in most cold astrophysical environments, it probably plays the same roles in space in the formation of biologically relevant compounds. Results also show that although the formation of uracil and cytosine from pyrimidine in ices is fairly straightforward, the formation of thymine is not. This is mostly due to the fact that methylation is a limiting step for its formation, particularly in H2O-rich ices, where methylation must compete with oxidation. The relative inefficiency of the abiotic formation of thymine to that of uracil and cytosine, together with the fact that thymine has not been detected in meteorites, are not inconsistent with the RNA world hypothesis. Indeed, a lack of abiotically produced thymine delivered to the early Earth may have forced the choice for an RNA world, in which only uracil and cytosine are needed, but not thymine.


Subject(s)
Extraterrestrial Environment , Models, Theoretical , Nucleic Acids , Photosynthesis , Absorption, Radiation , Cytosine/chemistry , Cytosine/radiation effects , Ice , Nucleic Acids/chemistry , Nucleic Acids/radiation effects , Photons , Prebiotics , Radiation, Ionizing , Thymine/chemistry , Thymine/radiation effects , Ultraviolet Rays , Uracil/chemistry , Uracil/radiation effects
11.
Science ; 345(6198): 786-91, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25124433

ABSTRACT

Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

12.
Astrobiology ; 13(10): 948-62, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24143868

ABSTRACT

The informational subunits of RNA or DNA consist of substituted N-heterocyclic compounds that fall into two groups: those based on purine (C5H4N4) (adenine and guanine) and those based on pyrimidine (C4H4N2) (uracil, cytosine, and thymine). Although not yet detected in the interstellar medium, N-heterocycles, including the nucleobase uracil, have been reported in carbonaceous chondrites. Recent laboratory experiments and ab initio calculations have shown that the irradiation of pyrimidine in ices containing H2O, NH3, or both leads to the abiotic production of substituted pyrimidines, including the nucleobases uracil and cytosine. In this work, we studied the methylation and oxidation of pyrimidine in CH3OH:pyrimidine, H2O:CH3OH:pyrimidine, CH4:pyrimidine, and H2O:CH4:pyrimidine ices irradiated with UV photons under astrophysically relevant conditions. The nucleobase thymine was detected in the residues from some of the mixtures. Our results suggest that the abundance of abiotic thymine produced by ice photolysis and delivered to the early Earth may have been significantly lower than that of uracil. Insofar as the delivery of extraterrestrial molecules was important for early biological chemistry on early Earth, these results suggest that there was more uracil than thymine available for emergent life, a scenario consistent with the RNA world hypothesis.


Subject(s)
Extraterrestrial Environment , Ice , Pyrimidines/radiation effects , Thymine/chemistry , Ultraviolet Rays , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Methane/chemistry , Methanol/chemistry , Reference Standards , Water/chemistry
13.
Article in English | MEDLINE | ID: mdl-26435553

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are likely responsible for the family of infrared emission features seen in a wide variety of astrophysical environments. A potentially important subclass of these materials are PAHs whose edges contain excess H atoms (Hn-PAHs). This type of compound may be present in space, but it has been difficult to assess this possibility because of a lack of suitable laboratory spectra to assist with analysis of astronomical data. We present 4000-500 cm-1 (2.5-20 µm) infrared spectra of 23 Hn-PAHs and related molecules isolated in argon matrices under conditions suitable for interpretation of astronomical data. Spectra of molecules with mixed aromatic and aliphatic domains show characteristics that distinguish them from fully aromatic PAH equivalents. Two major changes occur as PAHs become more hydrogenated: (1) aromatic C-H stretching bands near 3.3 µm weaken and are replaced with stronger aliphatic bands near 3.4 µm, and (2) aromatic C-H out-of-plane bending mode bands in the 11-15 µm region shift and weaken concurrent with growth of a strong aliphatic -CH2-deformation mode near 6.9 µm. Implications for interpreting astronomical spectra are discussed with emphasis on the 3.4 and 6.9 µm features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, and IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 µm features. We show that 'normal' PAH emission objects contain relatively few Hn-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

14.
Science ; 338(6114): 1583-7, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23258889

ABSTRACT

Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 ± 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

15.
Astrobiology ; 12(4): 295-314, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22519971

ABSTRACT

Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases-the information subunits of DNA and RNA-are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab initio calculations have already shown that the irradiation of pyrimidine in pure H(2)O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH(3):pyrimidine and H(2)O:NH(3):pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces.


Subject(s)
Extraterrestrial Environment/chemistry , Pyrimidines/chemistry , Ultraviolet Rays , DNA/chemistry , Meteoroids , RNA/chemistry , Water/chemistry
16.
Science ; 336(6080): 452-4, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22461502

ABSTRACT

Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments to which they were exposed. We found that icy grains originating in the outer disk, where temperatures were less than 30 kelvin, experienced ultraviolet irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural by-products of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own.


Subject(s)
Evolution, Planetary , Ice , Organic Chemicals , Planets , Solar System , Ultraviolet Rays , Chemistry Techniques, Synthetic , Evolution, Chemical , Extraterrestrial Environment , Photons , Temperature
17.
Science ; 333(6046): 1113-6, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21868667

ABSTRACT

The Hayabusa spacecraft successfully recovered dust particles from the surface of near-Earth asteroid 25143 Itokawa. Synchrotron-radiation x-ray diffraction and transmission and scanning electron microscope analyses indicate that the mineralogy and mineral chemistry of the Itokawa dust particles are identical to those of thermally metamorphosed LL chondrites, consistent with spectroscopic observations made from Earth and by the Hayabusa spacecraft. Our results directly demonstrate that ordinary chondrites, the most abundant meteorites found on Earth, come from S-type asteroids. Mineral chemistry indicates that the majority of regolith surface particles suffered long-term thermal annealing and subsequent impact shock, suggesting that Itokawa is an asteroid made of reassembled pieces of the interior portions of a once larger asteroid.

18.
Science ; 333(6046): 1125-8, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21868671

ABSTRACT

Regolith particles on the asteroid Itokawa were recovered by the Hayabusa mission. Their three-dimensional (3D) structure and other properties, revealed by x-ray microtomography, provide information on regolith formation. Modal abundances of minerals, bulk density (3.4 grams per cubic centimeter), and the 3D textures indicate that the particles represent a mixture of equilibrated and less-equilibrated LL chondrite materials. Evidence for melting was not seen on any of the particles. Some particles have rounded edges. Overall, the particles' size and shape are different from those seen in particles from the lunar regolith. These features suggest that meteoroid impacts on the asteroid surface primarily form much of the regolith particle, and that seismic-induced grain motion in the smooth terrain abrades them over time.

19.
Proc Natl Acad Sci U S A ; 108(48): 19171-6, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-21464292

ABSTRACT

Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state (13)C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites.


Subject(s)
Extraterrestrial Environment/chemistry , Formaldehyde/chemistry , Magnetic Resonance Spectroscopy/methods , Meteoroids , Nanostructures/chemistry , Organic Chemicals/analysis , Microscopy, Electron, Scanning , Models, Chemical , Molecular Structure , Polymerization
20.
J Chem Phys ; 133(10): 104303, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20849168

ABSTRACT

The UV photoirradiation of pyrimidine in pure H(2)O ices has been explored using second-order Moller-Plesset perturbation theory and density functional theory methods, and compared with experimental results. Mechanisms studied include those starting with neutral pyrimidine or cationic pyrimidine radicals, and reacting with OH radical. The ab initio calculations reveal that the formation of some key species, including the nucleobase uracil, is energetically favored over others. The presence of one or several water molecules is necessary in order to abstract a proton which leads to the final products. Formation of many of the photoproducts in UV-irradiated H(2)O:pyrimidine=20:1 ice mixtures was established in a previous experimental study. Among all the products, uracil is predicted by quantum chemical calculations to be the most favored, and has been identified in experimental samples by two independent chromatography techniques. The results of the present study strongly support the scenario in which prebiotic molecules, such as the nucleobase uracil, can be formed under abiotic processes in astrophysically relevant environments, namely in condensed phase on the surface of icy, cold grains before being delivered to the telluric planets, like Earth.


Subject(s)
Pyrimidines/chemistry , Ultraviolet Rays , Uracil/chemical synthesis , Water/chemistry , Astronomical Phenomena , Molecular Dynamics Simulation , Oxidation-Reduction , Quantum Theory , Uracil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...