Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 126(51): 9564-9576, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36534504

ABSTRACT

The gas phase and heterogeneous reaction on mineral dust aerosols of trace gases could significantly affect the tropospheric oxidation capacity and aerosol composition of the atmosphere. In this work, the OH radical-initiated oxidation of a hydrofluoroolefin, HFO-1234zc, and subsequent reaction of favorable intermediates with other reactive species, such as O2, HO2, and NOx (x = 1-2) radicals, were studied, and the role of mineral dust in the form of silicate clusters on the reaction mechanism and rate constant was studied. In the gas phase, OH radical addition to HFO-1234zc is kinetically more favorable than the H-atom abstraction reaction. The calculated reaction energy barrier and thermochemical parameters show that both the initial reactions are more feasible on silicate clusters. Thus, silicates can act as chemical sinks for trapping of hydrofluoroolefins (HFOs). It is found that both gas-phase and heterogeneous reactions are responsible for the transformation of HFOs into fluorinated compounds in the atmosphere. Further, the results show that the ozone creation potential of HFO-1234zc is low, and few of the products are harmful to aquatic organisms. This study provides new insights on the formation of toxic pollutants from the oxidation of HFO-1234zc, which may have significant implications in the troposphere.

2.
Org Biomol Chem ; 20(1): 152-162, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34874031

ABSTRACT

The antioxidant capacity of ß-carotene has been studied in terms of H-atom abstraction reactions using quantum chemical methods. These oxidation reactions are studied for the all-trans as well as 15,15'-cis isomers (15Z) of ß-carotene, as the latter is only ∼10 kJ mol-1 less stable than the all-trans isomer in the gas phase and about 9 kJ mol-1 less stable in aqueous solution. Hydrogen abstraction from the rotamers obtained through C-C single and double bond rotations has been shown to play an important role in determining the antioxidant capacity of ß-carotene. Hydrogen abstraction from the C4 and C5-CH3 positions of the ß-ionone rings and the C7 and C9 positions along the polyene chain of ß-carotene by the hydroxyl radical have been studied. In the all-trans form the most favorable H-atom abstraction reaction occurs at the C4 position of the terminal regions of the polyene π-system of ß-carotene, closely followed by hydrogen abstraction from the C5 methyl position. The H-atom abstraction reactions are more exothermic in water than in the gas phase due to solvation energies for the water product.


Subject(s)
Antioxidants/chemistry , beta Carotene/chemistry , Density Functional Theory , Molecular Conformation
3.
J Phys Chem A ; 125(46): 10052-10064, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34755512

ABSTRACT

The ·OH-initiated reaction mechanism and kinetics of sulfoxaflor were investigated by using electronic structure calculations. The possible hydrogen atom and cyano group abstraction reaction pathways were studied, and the calculated thermochemical parameters show that the hydrogen atom abstraction from the C7 carbon atom is the more favorable reaction pathway. The subsequent reactions for the favorable intermediate (I4) with other atmospheric reactive species, such as O2, H2O, HO2·, and NOx· (x = 1, 2), were studied in detail. The products identified from the subsequent reactions could contribute to secondary organic aerosol (SOA) formation in the atmosphere. The intermediates and products formed from the initial and subsequent reactions are equally as toxic as the parent sulfoxaflor. At 298 K, the rate constant calculated for the formation of the favorable intermediate I4 is 2.54 × 10-12 cm3 molecule-1 s-1, which shows that the lifetime of sulfoxaflor is 54 h. The excited-state calculation performed through time-dependent density functional theory shows that the photolysis of the title molecule is unlikely in the atmosphere. The global warming potentials (GWPs) for different time horizons, photochemical ozone creation potential (POCP), and ecotoxicity analysis were also studied for the insecticide sulfoxaflor.


Subject(s)
Hydroxyl Radical , Ozone , Atmosphere , Kinetics , Pyridines , Sulfur Compounds
4.
Phys Chem Chem Phys ; 22(46): 26819-26827, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33231595

ABSTRACT

The unimolecular decomposition of acetyl peroxy radicals followed by subsequent nitration is known to lead to the formation of peroxy acetyl nitrate (PAN) in the troposphere. Using high level quantum chemical calculations, we show that the acetyl peroxy radical is a precursor in the formation of tropospheric ketene. The results show that the presence of a single or double water molecule(s) as a catalyst does not influence the decomposition reaction directly to form ketene and hydroperoxy radicals. The electronic excitation of the reactive and product complexes occurs in the wavelength range of ∼1400 nm, suggesting that the complexes undergo photoexcitation in the near IR region. The results ascertain that the dissociation of acetyl peroxy radicals into ketene and hydroperoxy radicals occurs more likely through the excitation route and the corresponding excitation wavelength reveals that the reactions are red-light driven. Three different product complexes, ketene·HO2, ketene·H2O·HO2 and ketene·(H2O)2·HO2, are formed from the reaction. The direct dynamics simulations show that the product complexes are more stable and possess a long lifetime. The calculated temperature dependent equilibrium constant of the product complexes reveals that their atmospheric abundances decrease with increasing altitudes.

5.
J Phys Chem A ; 123(41): 8954-8967, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31498618

ABSTRACT

Diuron is a herbicide that has been classified as an environmental pollutant because of its harmful effects on living beings and environment. In the present work, the OH-initiated oxidation reaction of diuron is investigated by performing electronic structure calculations based on density functional theory (DFT) methods, M06-2X, ωB97X-D, and MPWB1K using the 6-31G(d,p) basis set. The CBS-QB3 method is used to validate the results obtained from the DFT methods. All possible initial hydrogen and chlorine atom abstraction reaction pathways involved in the oxidation of diuron were studied, and the favorable reaction pathways were found by analyzing the potential energy surface and thermochemistry of the reactions. The results obtained from the present work show that hydrogen atom abstraction from methyl and amine groups of diuron are energetically favorable, which leads to the formation of diuron radical intermediate and water molecule. The rate constant is calculated for most favorable reaction pathways by using canonical variation transition state theory (CVT) with small curvature tunnelling (SCT) correction over the temperature range 298-1000 K. The atmospheric lifetime of diuron is found to be around 15 days. The subsequent reaction of most favorable diuron radical intermediate with other atmospheric reactive species, such as O2, H2O, HO2, and NOx (x = 1, 2) radicals are studied. The time-dependent DFT calculation is performed to study the photolysis of diuron and favorable diuron radical intermediates. This study provides thermochemical and kinetic data for the oxidation of diuron initiated by OH radical through H atom abstraction reaction.

6.
J Phys Chem A ; 122(48): 9316-9325, 2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30351946

ABSTRACT

The atmospheric reaction of methyldichloroacetate (MDCA) with OH radical is studied using electronic structure calculations. Five different pathways were considered for the initial reactions, which results in the formation of alkyl radical of MDCA along with H2O, HOCl, and CH3O•. Among the five pathways studied, the α-carbon atom (-CHCl2 site) H atom abstraction reaction, which leads to the formation of the alkyl radical intermediate •CCl2C(O)OCH3 (I1) is found to be more favorable with an energy barrier of 7.3 kcal/mol, and Cl-atom abstraction reaction is having high energy barrier of 21.3 kcal/mol at M06-2X/6-311++G(2df,2p) level. The calculated thermochemical parameters show that except Cl-atom abstraction channel the other initial reaction channels are highly exothermic. The rate constant is calculated for the initial H atom abstraction reactions using canonical variational transition state theory over the temperature range of 278 to 350 K. The Arrhenius plot shows positive temperature dependence for both the reactions. The results from the calculated thermochemical parameters and rate constants show that the formation of the alkyl radical intermediate (I1) is more favorable with the rate constant of 2.07 × 10-13 cm3 molecule-1 s-1 at 298 K. The calculated atmospheric lifetime of MDCA is 28 days at normal atmospheric OH concentration. The results obtained from secondary reactions show that the major product formed from the oxidation chemistry of MDCA is methyl-2-chloro-2-oxoacetate (or) methyl oxalyl chloride.

7.
J Phys Chem A ; 122(22): 4972-4982, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29763558

ABSTRACT

In the present work, the reaction mechanism of two segregated hydrofluoroethers (HFEs), CH3OCF3 (HFE-143a) and CH3OCHF2 (HFE-152a), and a nonsegregated HFE, CHF2OCH2CF3 (HFE-245fa2), with OH radical is studied using electronic structure calculations. The initial reaction between HFE and OH radical is studied by considering two (three for CHF2OCH2CF3) pathways, H-atom abstraction and C-O bond breaking, OH addition reaction and C-C bond breaking, and OH addition reaction, which leads to the formation of alkyl radical intermediate. The dominant atmospheric fate of initially formed alkyl radical intermediate is its reaction with O2. The peroxy radicals thus formed exit through the reaction with HO2 radical and NO radical resulting in the formation of products, carbonyl fluoride (COF2), trifluoromethylformate, trifluoro(hydroperoxymethoxy)methane, difluoro(hydroperoxy methoxy)methane, difluoromethylformate, 2-(difluoromethoxy)-1,1,1-trifluoro-2-hydroperoxyethane, and difluoromethyl ester. The rate constant is calculated for the initial H-atom abstraction reaction using canonical variational transition state theory with small curvature tunnelling corrections over the temperature range 272-350 K. The atmospheric lifetime and global warming potential of HFEs are obtained from the calculated reaction potential energy surface and rate constant. The results are discussed with respect to the atmospheric implications of CH3OCF3 (HFE-143a), CH3OCHF2 (HFE-152a), and CHF2OCH2CF3 (HFE-245fa2).

8.
J Phys Chem A ; 121(32): 6028-6035, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28719205

ABSTRACT

The oxidation mechanism of monochloroacetic acid (CH2ClCOOH) by OH radical has been systematically investigated employing quantum mechanical methods coupled with kinetic calculation using canonical variational transition state theory. Three distinct transition states were identified for the titled reaction, two corresponding to the hydrogen atom abstraction and one corresponding to the chlorine atom abstraction. The rate constants of the titled reactions are computed over the temperature range 278-350 K, and the branching ratios calculated for the hydrogen atom abstraction from the -C(O)OH site and the -CH2Cl site are 25 and 75%, respectively, at 298 K. The computed branching ratio indicates that the kinetically favorable reaction is the hydrogen atom abstraction from the -CH2Cl site resulting in the formation of CHClC(O)OH radical, which further undergoes secondary reaction with O2 and other atmospheric species. The calculated overall rate constant for the hydrogen atom abstraction reactions is in consistent with the reported experimental rate constant. The atmospheric lifetime of CH2ClCOOH is found to be around 18 days.

9.
J Phys Chem B ; 118(13): 3479-90, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24611937

ABSTRACT

The nitration of tyrosine by atmospheric oxidants, O3 and NO2, is an important cause for the spread of allergenic diseases. In the present study, the mechanism and pathways for the reaction of tyrosine with the atmospheric oxidants O3 and NO2 are studied using DFT-M06-2X, B3LYP, and B3LYP-D methods with the 6-311+G(d,p) basis set. The energy barrier for the initial oxidation reactions is also calculated at the CCSD(T)/6-31+G(d,p) level of theory. The reaction is studied in gas, aqueous, and lipid media. The initial oxidation of tyrosine by O3 proceeds by H atom abstraction and addition reactions and leads to the formation of six different intermediates. The subsequent nitration reaction is studied for all the intermediates, and the results show that the nitration affects both the side chain and the aromatic ring of tyrosine. The rate constant of the favorable oxidation and nitration reaction is calculated using variational transition state theory over the temperature range of 278-350 K. The spectral properties of the oxidation and nitration products are calculated at the TD-M06-2X/6-311+G(d,p) level of theory. The fate of the tyrosine radical intermediate is studied by its reaction with glutathione antioxidant. This study provides an enhanced understanding of the oxidation and nitration of tyrosine by O3 and NO2 in the context of improving the air quality and reducing the allergic diseases.


Subject(s)
Nitrogen Dioxide/chemistry , Ozone/chemistry , Tyrosine/chemistry , Antioxidants/chemistry , Glutathione/chemistry , Oxidation-Reduction , Thermodynamics
10.
J Phys Chem A ; 117(22): 4611-26, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23656398

ABSTRACT

Dimethylphenols are highly reactive in the atmosphere, and their oxidation plays a vital role in the autoignition and combustion processes. The dominant oxidation process for dimethylphenols is by gas-phase reaction with OH radical. In the present study, the reaction of OH radical with dimethylphenol isomers is studied using density functional theory methods, B3LYP, M06-2X, and MPW1K, and also at the MP2 level of theory using 6-31G(d,p) and 6-31+G(d,p) basis sets. The activation energy values have also been calculated using the CCSD(T) method with 6-31G(d,p) and 6-311+G(d,p) basis sets using the geometries optimized at the M06-2X/6-31G(d,p) level of theory. The reactions subsequent to the principal oxidation steps are studied, and the different reaction pathways are modeled. The positions of the OH and CH3 substituents in the aromatic ring have a great influence on the reactivity of dimethylphenol toward OH radical. Accordingly, the reaction is initiated in four different ways: H-atom abstraction from the phenol group, H-atom abstraction from a methyl group, H-atom abstraction from the aromatic ring by OH radical, or electrophilic addition of OH radical to the aromatic ring. Aromatic peroxy radicals arising from initial H-atom abstraction and subsequent O2 addition lead to the formation of hydroperoxide adducts and alkoxy radicals. The O2 additions to dimethylphenol-OH adduct results in the formation of epoxide and bicyclic radicals. The rate constants for the most favorable reaction pathways are calculated using canonical variational transition state theory with small curvature tunneling corrections. This study provides thermochemical and kinetic data for the oxidation of dimethylphenol in the atmosphere and demonstrates the mechanism for the conversion of peroxy radical into aldehydes, hydroperoxides, epoxides, and bicyclic radicals, and their lifetimes in the atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...