Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Clin Exp Urol ; 11(1): 59-68, 2023.
Article in English | MEDLINE | ID: mdl-36923725

ABSTRACT

Prostatic inflammation and prostatic fibrosis are associated with lower urinary tract dysfunction in men. Prostatic inflammation arising from a transurethral uropathogenic E. coli infection is sufficient to increase prostatic collagen content in male mice. It is not known whether and how the sequence, duration and chronology of prostatic infection influence urinary function, prostatic inflammation and collagen content. We placed a transurethral catheter into adult male C57BL/6J mice to deliver uropathogenic E. coli UTI189 two-weeks prior to study endpoint (to evaluate the short-term impact of infection), 10-weeks prior to study endpoint (to evaluate the long-term impact of infection), or two-, six-, and ten-weeks prior to endpoint (to evaluate the impact of repeated intermittent infection). Mice were catheterized the same number of times across all experimental groups and instilled with sterile saline when not instilled with E. coli to control for the variable of catheterization. We measured bacterial load in free catch urine, body weight and weight of bladder and dorsal prostate; prostatic density of leukocytes, collagen and procollagen 1A1 producing cells, and urinary function. Transurethral E. coli instillation caused more severe and persistent bacteriuria in mice with a history of one or more transurethral instillations of sterile saline or E. coli. Repeated intermittent infections resulted in a greater relative bladder wet weight than single infections. However, voiding function, as measured by the void spot assay, and the density of collagen and ProCOL1A1+ cells in dorsal prostate tissue sections did not significantly differ among infection groups. The density of CD45+ leukocytes was greater in the dorsal prostate of mice infected two weeks prior to study endpoint but not in other infection groups compared to uninfected controls.

2.
Am J Clin Exp Urol ; 9(1): 121-131, 2021.
Article in English | MEDLINE | ID: mdl-33816700

ABSTRACT

Urinary voiding dysfunction in aging men can cause bothersome symptoms and irreparable tissue damage. Underlying mechanisms are not fully known. We previously demonstrated that subcutaneous, slow-release testosterone and estradiol implants (T+E2) drive a pattern of urinary voiding dysfunction in male mice that resembles that of aging men. The initial goal of this study was to test the hypothesis that prostatic epithelial beta-catenin (Ctnnb1) is required for T+E2-mediated voiding dysfunction. Targeted Ctnnb1 deletion did not significantly change voiding function in control or T+E2 treated mice but led to the surprising discovery that the C57BL/6J × FVB/NJ × 129S1 mixed genetic background onto which Ctnnb1 loss of function alleles were maintained is profoundly susceptible to voiding dysfunction. The mixed background mice develop a more rapid T+E2-mediated increase in spontaneous urine spotting, are more impaired in ability to initiate bladder contraction, and develop larger and heavier bladders than T+E2 treated C57BL/6J pure bred mice. To better understand mechanisms, we separately evaluated contributions of T and E2 and found that E2 mediates voiding dysfunction. Our findings that genetic factors serve as modifiers of responsiveness to T and E2 demonstrate the need to control for genetic background in studies of male voiding dysfunction. We also show that genetic factors could control severity of voiding dysfunction. We demonstrate the importance of E2 as a key mediator of voiding impairment, and show that the concentration of E2 in subcutaneous implants determines the severity of voiding dysfunction in mice, demonstrating that the mouse model is tunable, a factor which is important for future pharmacological intervention studies.

3.
Am J Physiol Renal Physiol ; 320(1): F31-F46, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33135480

ABSTRACT

Bacterial infection is one known etiology of prostatic inflammation. Prostatic inflammation is associated with prostatic collagen accumulation and both are linked to progressive lower urinary tract symptoms in men. We characterized a model of prostatic inflammation using transurethral instillations of Escherichia coli UTI89 in C57BL/6J male mice with the goal of determining the optimal instillation conditions, understanding the impact of instillation conditions on urinary physiology, and identifying ideal prostatic lobes and collagen 1a1 prostatic cell types for further analysis. The smallest instillation volume tested (50 µL) distributed exclusively to the bladder, 100- and 200-µL volumes distributed to the bladder and prostate, and a 500-µL volume distributed to the bladder, prostate, and ureter. A threshold optical density of 0.4 E. coli UTI89 in the instillation fluid was necessary for significant (P < 0.05) prostate colonization. E. coli UTI89 infection resulted in a low frequency, high volume spontaneous voiding pattern. This phenotype was due to exposure to E. coli UTI89, not catheterization alone, and was minimally altered by a 50-µL increase in instillation volume and doubling of E. coli concentration. Prostate inflammation was isolated to the dorsal prostate and was accompanied by increased collagen density. This was partnered with increased density of protein tyrosine phosphatase receptor type C+, procollagen type I-α1+ copositive cells and decreased density of α2-smooth muscle actin+, procollagen type I-α1+ copositive cells. Overall, we determined that this model is effective in altering urinary phenotype and producing prostatic inflammation and collagen accumulation in mice.


Subject(s)
Collagen Type I/metabolism , Escherichia coli Infections/microbiology , Procollagen/metabolism , Prostate/microbiology , Prostatitis/microbiology , Uropathogenic Escherichia coli/pathogenicity , Actins/metabolism , Animals , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Escherichia coli Infections/complications , Leukocyte Common Antigens/metabolism , Male , Mice, Inbred C57BL , Prostate/metabolism , Prostate/pathology , Prostatitis/metabolism , Prostatitis/pathology , Tissue Culture Techniques
4.
Am J Physiol Renal Physiol ; 318(3): F617-F627, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31904290

ABSTRACT

The National Institutes of Health leveled new focus on sex as a biological variable with the goal of understanding sex-specific differences in health and physiology. We previously published a functional assessment of the impact of sex, androgens, and prostate size on C57BL/6J mouse urinary physiology (Ruetten H, Wegner KA, Zhang HL, Wang P, Sandhu J, Sandhu S, Mueller B, Wang Z, Macoska J, Peterson RE, Bjorling DE, Ricke WA, Marker PC, Vezina CM. Am J Physiol Renal Physiol 317: F996-F1009, 2019). Here, we measured and compared five characteristics of urethral histology (urethral lumen diameter and area, epithelial cell count, epithelial and rhabdosphincter thickness, epithelial cell area, and total urethral area) in male and female 9-wk-old C57BL/6J mice using hematoxylin and eosin staining. We also compared male mice with castrated male mice, male and female mice treated with the steroid 5α-reductase inhibitor finasteride or testosterone, or male mice harboring alleles (Pbsn4cre/+; R26RDta/+) that reduce prostate lobe mass. The three methods used to reduce prostate mass (castration, finasteride, and Pbsn4cre/+; R26RDta/+) changed urethral histology, but none feminized male urethral histology (increased urethral epithelial area). Exogenous testosterone caused increased epithelial cell count in intact females but did not masculinize female urethral histology (decrease epithelial area). Our results lay a critical foundation for future studies as we begin to parse out the influence of hormones and cellular morphology on male and female urinary function.


Subject(s)
Androgens/metabolism , Prostate/pathology , Prostatic Hyperplasia/pathology , Testosterone/pharmacology , Urethra/anatomy & histology , Urinary Tract Physiological Phenomena , Animals , Female , Male , Mice , Mice, Inbred C57BL , Orchiectomy , Testosterone/administration & dosage , Urethra/drug effects
5.
Toxicol Pathol ; 47(8): 1038-1042, 2019 12.
Article in English | MEDLINE | ID: mdl-31662055

ABSTRACT

The purpose of this symposium report is to summarize information from a session 3 oral presentation at the Society of Toxicologic Pathology Annual Symposium in Raleigh, North Carolina. Mice are genetically tractable and are likely to play an important role in elucidating environmental, genetic, and aging-related mechanisms of urinary dysfunction in men. We and others have made significant strides in developing quantitative methods for assessing mouse urinary function and our collaborators recently showed that aging male mice, like men, develop urinary dysfunction. Yet, it remains unclear how mouse prostate anatomy and histology relate to urinary function. The purpose of this report is to share foundational resources for evaluating mouse prostate histology and urinary physiology from our recent publication "Impact of Sex, Androgens, and Prostate Size on C57BL/6J Mouse Urinary Physiology: Functional Assessment." We will begin with a review of prostatic embryology in men and mice, then move to comparative histology resources, and conclude with quantitative measures of rodent urinary physiology.


Subject(s)
Androgens/metabolism , Organogenesis/physiology , Prostate/embryology , Urinary Bladder/physiology , Urinary Tract Physiological Phenomena , Aging/physiology , Animals , Congresses as Topic , Humans , Male , Mice , Mice, Inbred C57BL , Organ Size/physiology , Prostate/anatomy & histology , Prostate/metabolism , Species Specificity , Urinary Bladder/anatomy & histology , Urinary Bladder/metabolism
6.
Am J Physiol Renal Physiol ; 317(4): F996-F1009, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31390231

ABSTRACT

Laboratory mice are used to identify causes of urinary dysfunction including prostate-related mechanisms of lower urinary tract symptoms. Effective use of mice for this purpose requires a clear understanding of molecular, cellular, anatomic, and endocrine contributions to voiding function. Whether the prostate influences baseline voiding function has not been specifically evaluated, in part because most methods that alter prostate mass also change circulating testosterone concentrations. We performed void spot assay and cystometry to establish a multiparameter "baseline" of voiding function in intact male and female 9-wk-old (adult) C57BL/6J mice. We then compared voiding function in intact male mice to that of castrated male mice, male (and female) mice treated with the steroid 5α-reductase inhibitor finasteride, or male mice harboring alleles (Pbsn4cre/+; R26RDta/+) that significantly reduce prostate lobe mass by depleting prostatic luminal epithelial cells. We evaluated aging-related changes in male urinary voiding. We also treated intact male, castrate male, and female mice with exogenous testosterone to determine the influence of androgen on voiding function. The three methods used to reduce prostate mass (castration, finasteride, and Pbsn4cre/+; R26RDta/+) changed voiding function from baseline but in a nonuniform manner. Castration feminized some aspects of male urinary physiology (making them more like intact female mice) while exogenous testosterone masculinized some aspects of female urinary physiology (making them more like intact male mice). Our results provide evidence that circulating testosterone is responsible in part for baseline sex differences in C57BL/6J mouse voiding function while prostate lobe mass in young, healthy adult mice has a lesser influence.


Subject(s)
Androgens/physiology , Prostate/anatomy & histology , Prostate/physiology , Urinary Tract Physiological Phenomena , 5-alpha Reductase Inhibitors/pharmacology , Aging , Animals , Epithelial Cells/physiology , Female , Finasteride/pharmacology , Male , Mice , Mice, Inbred C57BL , Orchiectomy , Prostate/cytology , Sex Characteristics , Testosterone/pharmacology , Urinary Tract Physiological Phenomena/drug effects , Urinary Tract Physiological Phenomena/genetics , Urodynamics
7.
Histochem Cell Biol ; 152(1): 35-45, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30976911

ABSTRACT

Prostate autonomic and sensory axons control glandular growth, fluid secretion, and smooth muscle contraction and are remodeled during cancer and inflammation. Morphogenetic signaling pathways reawakened during disease progression may drive this axon remodeling. These pathways are linked to proliferative activities in prostate cancer and benign prostate hyperplasia. However, little is known about which developmental signaling pathways guide axon investment into prostate. The first step in defining these pathways is pinpointing when axon subtypes first appear in prostate. We accomplished this by immunohistochemically mapping three axon subtypes (noradrenergic, cholinergic, and peptidergic) during fetal, neonatal, and adult stages of mouse prostate development. We devised a method for peri-prostatic axon density quantification and tested whether innervation is uniform across the proximo-distal axis of dorsal and ventral adult mouse prostate. Many axons directly interact with or innervate neuroendocrine cells in other organs, so we examined whether sensory or autonomic axons innervate neuroendocrine cells in prostate. We first detected noradrenergic, cholinergic, and peptidergic axons in prostate at embryonic day (E) 14.5. Noradrenergic and cholinergic axon densities are uniform across the proximal-distal axis of adult mouse prostate while peptidergic axons are denser in the periurethral and proximal regions. Peptidergic and cholinergic axons are closely associated with prostate neuroendocrine cells whereas noradrenergic axons are not. These results provide a foundation for understanding mouse prostatic axon development and organization and, provide strategies for quantifying axons during progression of prostate disease.


Subject(s)
Axons/metabolism , Prostate/embryology , Prostate/innervation , Animals , Axons/pathology , Male , Mice , Mice, Inbred C57BL , Prostate/cytology , Prostate/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...