Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Nanotechnol ; 8(6): 471-484, 2020.
Article in English | MEDLINE | ID: mdl-33069205

ABSTRACT

BACKGROUND: Sorafenib tosylate (SFN) belongs to the BCS class II drug with low solubility and undergoes first-pass metabolism, which leads to reduced bioavailability of 38%. OBJECTIVE: The present study aimed at developing SFN SNEDDS to improve their solubility and bioavailability. METHODS: Preliminary solubility studies were performed to identify oil, surfactant, and co-surfactant ratios. Pseudo tertiary phase diagram was constructed to select the areas of nanoemulsion based on the monophasic region. A total of 15 formulations of SFN SNEDDS were prepared and screened for phase separation and temperature variation using thermodynamic stability studies. These SNEDDS further characterized for % transmission, content of the drug, and in vitro dissolution analysis. The optimized formulation was analyzed for particle size, Z average, entrapment efficiency, and SEM analysis. RESULTS: Based on the pseudo tertiary phase diagram, acrysol EL 135, kolliphor, and transcutol-P as oil, surfactant, and co-surfactant were selected, respectively. All the formulations were stable with no phase separation and maximum % transmittance of 98.92%. The formulation F15 was selected as an optimized one, based on maximum drug content of 99.89%, with 98.94% drug release within 1 hour and it will be stable for 6 months. From in vivo bioavailability studies, the Cmax of optimized SNEDDS (94.12±2.12ng/ml) is higher than pure SFN suspension (15.32±1.46 ng/ml) and the AUC0-∞ of optimized SNEDDS is also increased by 5 times (512.1±8.54 ng.h/ml) than pure drug (98.75±6.45ng.h/ml), which indicates improved bioavailability of the formulation. CONCLUSION: SFN loaded SNEDDS could potentially be exploited as a delivery system for improving oral bioavailability by minimizing first-pass metabolism and increased solubility. Lay Summary: Renal cell carcinoma accounts for 2% of global cancer diagnoses and deaths, it has more than doubled in incidence in the developed world over the past half-century, and today is the ninth most common neoplasm in the United States. Sorafenib is a protein kinase inhibitor indicated as a treatment for advanced renal cell carcinoma. The present study aimed at developing Sorafenib SNEDDS to improve their solubility and bioavailability. A total of 15 formulations of Sorafenib SNEDDS were prepared and screened for phase separation and temperature variation using thermodynamic stability studies. Sorafenib loaded SNEDDS could potentially be exploited as a delivery system for increased oral bioavailability by 5 times when comparing with pure drug by minimizing first-pass metabolism and increased solubility.


Subject(s)
Carcinoma, Renal Cell/drug therapy , Drug Delivery Systems/methods , Protein Kinase Inhibitors/pharmacokinetics , Sorafenib/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Carcinoma, Renal Cell/diagnosis , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Drug Liberation/physiology , Emulsions/chemistry , Kidney Neoplasms/pathology , Models, Animal , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Oils/chemistry , Particle Size , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/therapeutic use , Rats , Rats, Wistar , Solubility , Sorafenib/administration & dosage , Sorafenib/therapeutic use , Surface-Active Agents/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...