Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 33(9): e2004374, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33501746

ABSTRACT

The observation of electronic phase separation textures in vanadium dioxide, a prototypical electron-correlated oxide, has recently added new perspectives on the long standing debate about its metal-insulator transition and its applications. Yet, the lack of atomically resolved information on phases accompanying such complex patterns still hinders a comprehensive understanding of the transition and its implementation in practical devices. In this work, atomic resolution imaging and spectroscopy unveils the existence of ferroelastic tweed structures on ≈5 nm length scales, well below the resolution limit of currently used spectroscopic imaging techniques. Moreover, density functional theory calculations show that this pretransitional fine-scale tweed, which on average looks and behaves like the standard metallic rutile phase, is in fact weaved by semi-dimerized chains of vanadium in a new monoclinic phase that represents a structural bridge to the monoclinic insulating ground state. These observations provide a multiscale perspective for the interpretation of existing data, whereby phase coexistence and structural intermixing can occur all the way down to the atomic scale.

2.
ACS Appl Mater Interfaces ; 8(26): 16823-32, 2016 Jul 06.
Article in English | MEDLINE | ID: mdl-27280493

ABSTRACT

Lattice-mismatched epitaxial films of La0.7Sr0.3MnO3 (LSMO) on LaAlO3 (001) substrates develop a crossed pattern of misfit dislocations above a critical thickness of 2.5 nm. Upon film thickness increases, the dislocation density progressively increases, and the dislocation spacing distribution becomes narrower. At a film thickness of 7.0 nm, the misfit dislocation density is close to the saturation for full relaxation. The misfit dislocation arrangement produces a 2D lateral periodic structure modulation (Λ ≈ 16 nm) alternating two differentiated phases: one phase fully coherent with the substrate and a fully relaxed phase. This modulation is confined to the interface region between film and substrate. This phase separation is clearly identified by X-ray diffraction and further proven in the macroscopic resistivity measurements as a combination of two transition temperatures (with low and high Tc). Films thicker than 7.0 nm show progressive relaxation, and their macroscopic resistivity becomes similar than that of the bulk material. Therefore, this study identifies the growth conditions and thickness ranges that facilitate the formation of laterally modulated nanocomposites with functional properties notably different from those of fully coherent or fully relaxed material.

3.
J Phys Condens Matter ; 26(39): 395010, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25204321

ABSTRACT

In this work we report on a combined macro, micro and nanoscale investigation where electronic transport properties through La⅔Sr⅓MnO3 (LSMO) microfabricated bridges, in which nano-sized resistive states are induced by using a conducting scanning probe microscope (C-SPM), are analyzed. The strategy intentionally avoids the standard capacitor-like geometry, thus allowing the study of the electronic transport properties of the locally modified region, and approaches the integration of functional oxides in low dimensional devices while providing macroscopic evidence of nanoscale resistive switching (RS). The metallic and ferromagnetic LSMO is locally modified from its low resistance state (LRS) to a high resistance state (HRS) when a bias voltage is applied on its surface through the conducting tip, which acts as a mobile electrode. Starting from a metallic oxide the electroforming process is not required, thus avoiding one of the major drawbacks for the implementation of memory devices based on RS phenomena. The application of a bias voltage generates an electric field that promotes charge depletion, leading to a strong increase of the resistance, i.e. to the HRS. This effect is not only confined to the outermost surface layer, its spatial extension and final HRS condition can be modulated by the magnitude and duration of the potential applied, opening the door to the implementation of multilevel devices. In addition, the half-metallic character, i.e. total spin polarization, of LSMO might allow the implementation of memory elements and active spintronic devices in the very same material. The stability of the HRS and LRS as a function of temperature, magnetic field and compliance current is also analyzed, allowing the characterization of the nature of the switching process and the active material.

4.
Nanoscale ; 5(7): 2990-8, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23459834

ABSTRACT

The chemical composition and the magnetic structure of individual La0.7Sr0.3MnO3 (LSMO) ferromagnetic manganite epitaxial nanostructures less than 200 nm in width are explored using Photoemission Electron Microscopy (PEEM). X-ray absorption spectra (XAS) provide separate information on the surface and the bulk composition of the nanoislands and give evidence of Mn(2+) present on the surface of otherwise stoichiometric nanostructures. Ferromagnetic domains less than 70 nm are resolved using X-ray magnetic circular dichroism (XMCD), which allows for the detection of magnetic vortex states in both (001)LSMO square and (111)LSMO triangular manganite nanoislands. The evolution of single nanostructures under an in-plane magnetic field is seen to depend on the specific nanoisland size and geometry. In particular, PEEM XMCD imaging allows detecting opposite chiralities as well as a variety of magnetization behaviors for different nanoislands.

5.
Phys Rev Lett ; 110(10): 107206, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23521293

ABSTRACT

Strain engineering of functional properties in epitaxial thin films of strongly correlated oxides exhibiting octahedral-framework structures is hindered by the lack of adequate misfit relaxation models. Here we present unreported experimental evidence of a four-stage hierarchical development of octahedral-framework perturbations resulting from a progressive imbalance between electronic, elastic, and octahedral tilting energies in La(0.7)Sr(0.3)MnO(3) epitaxial thin films grown on SrTiO(3) substrates. Electronic softening of the Mn-O bonds near the substrate leads to the formation of an interfacial layer clamped to the substrate with strongly degraded magnetotransport properties, i.e., the so-called dead layer, while rigid octahedral tilts become relevant at advanced growth stages without significant effects on charge transport and magnetic ordering.

6.
Small ; 6(23): 2716-24, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21064087

ABSTRACT

Assembling arrays of ordered nanowires is a key objective for many of their potential applications. However, a lack of understanding and control of the nanowires' growth mechanisms limits their thorough development. In this work, an appealing new path towards self-organized epitaxial nanowire networks produced by high-throughput solution methods is reported. Two requisites are identified to generate the nanowires: a thermodynamic driving force for an unrestricted elongated equilibrium island shape, and a very fast effective coarsening rate. These requirements are met in anisotropically strained Ce(1-x)Gd(x)O(2-y) nanowires with the (011) orientation grown on the (001) surface of LaAlO(3) substrates. Nanowires with aspect ratios above ≈100 oriented along two mutually orthogonal axes are obtained leading to labyrinthine networks. A very fast effective nanowire growth rate (≈60 nm min(-1)) for ex-situ thermally annealed nanostructures derives from simultaneous kinetic processes occurring in a branched network. Ostwald ripening and anisotropic dynamic coalescence, both promoted by strain-driven attractive nanowire interaction, and rapid recrystallization, enabled by fast atomic diffusion associated with a high concentration of oxygen vacancies, contribute to such an effective growth rate. This bottom-up approach to self-organized nanowire growth has a wide potential for many materials and functionalities.


Subject(s)
Nanotechnology/methods , Nanowires/chemistry , Nanowires/ultrastructure , Microscopy, Electron, Transmission , Thermodynamics
7.
Nanotechnology ; 21(2): 025302, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19955603

ABSTRACT

When one-dimensional nanostructures are epitaxially grown on a substrate a key goal is to control the nanowire's position and orientation. Nanoscratching of single crystalline (001)- LaAlO(3) substrates is demonstrated to be extraordinarily effective in directing the self-assembly of Ce(0.9)Gd(0.1)O(2-y) epitaxial nanowires grown by chemical solution deposition. The local anisotropic elastic strain field imposed by the indentation lines is responsible for the breaking of the pre-existing orientation energy degeneracy and selects the nanowires' orientation parallel to the lines to an extent that can reach 100%.


Subject(s)
Cerium/chemistry , Crystallization/methods , Gadolinium/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Anisotropy , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Solutions , Surface Properties
8.
Nanomedicine ; 6(2): 362-70, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19800988

ABSTRACT

A one-step process for the production of nanoparticles presenting advanced magnetic properties can be achieved using vapor condensation. In this article, we report on the fabrication of Fe particles covered by a uniform MgO epitaxial shell. MgO has a lower surface energy than Fe, which results in a core-shell crystal formation. The particles satisfy a few of technical requirements for the practical use in real clinics, such as a high biocompatibility in living cells in-vitro, an injection through blood vessels without any clothing problems in murine model, a high absorption rate for magnetic hyperthermia at small particle concentration, and the potential to be used as contrast agent in the field of diagnostic magnetic imaging. They are also able to be used in drug delivery and magnetic-activated cell sorting. FROM THE CLINICAL EDITOR: In this paper, the authors report on the synthesis of Fe particles covered by a uniform MgO epitaxial shell resulting in a core-shell crystal formation. The particles are proven to be useful as contrast agents for magnetic resonance imaging and have the potential to be useful as heating mediators for cancer therapy through hyperthermia. They also might be used in drug delivery and magnetic-activated cell sorting.


Subject(s)
Contrast Media/chemistry , Hyperthermia, Induced/methods , Iron/chemistry , Magnesium Oxide/chemistry , Magnetic Resonance Imaging/methods , Nanospheres/chemistry , Crystallization/methods , Drug Compounding/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...