Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 114(12): 124801, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25860747

ABSTRACT

An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19} W/ cm^{2}. Highly charged gold ions with kinetic energies up to >200 MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.


Subject(s)
Heavy Ions , Lasers , Models, Theoretical , Particle Accelerators , Gold/chemistry , Thermodynamics
2.
Rev Sci Instrum ; 84(5): 056109, 2013 May.
Article in English | MEDLINE | ID: mdl-23742607

ABSTRACT

We present a versatile and handy method allowing a thickness determination of freestanding thin plastic foils by its transmission characteristics in the extreme ultraviolet (EUV) spectrum. The method is based on a laser induced plasma source, emitting light in the EUV region, a compact double-mirror EUV monochromator operating at a fixed wavelength of 18.9 nm, and a CCD camera. The measurement delivers transmission values with a standard deviation of ΔT = 0.005 enabling foils thickness characterization with nm-accuracy at a given foil density and stoichiometric composition. Well characterized freestanding ultra-thin foils can be directly implemented in, e.g., high intensity laser matter experiments without further manipulation.

3.
Phys Rev Lett ; 110(21): 215004, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23745890

ABSTRACT

We experimentally demonstrate a notably enhanced acceleration of protons to high energy by relatively modest ultrashort laser pulses and structured dynamical plasma targets. Realized by special deposition of snow targets on sapphire substrates and using carefully planned prepulses, high proton yields emitted in a narrow solid angle with energy above 21 MeV were detected from a 5 TW laser. Our simulations predict that using the proposed scheme protons can be accelerated to energies above 150 MeV by 100 TW laser systems.


Subject(s)
Lasers , Particle Accelerators , Plasma Gases/chemistry , Protons , Nuclear Physics
4.
Phys Rev Lett ; 110(2): 023001, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23383900

ABSTRACT

Strong field single ionization of homo- and heteronuclear noble gas dimers with ultrashort infrared laser pulses is experimentally investigated. A pronounced photoelectron yield maximum is found for dimers in the momentum range |p|≤0.1 a.u. which is absent for the corresponding monomer. This yield enhancement can be attributed to a new two-step strong field ionization mechanism active only in the dimers. In the first step, frustrated tunnel ionization at one of the atomic centers populates Rydberg states, which then become ionized in a second step through charge oscillation within the dimer ion core.

5.
Phys Rev Lett ; 110(20): 203002, 2013 May 17.
Article in English | MEDLINE | ID: mdl-25167402

ABSTRACT

The idea of atoms defying ionization in ultrastrong laser fields has fascinated physicists for the last three decades. In contrast to extensive theoretical work on atoms stabilized in strong fields only few experiments limited to intermediate intensities have been performed. In this work we show exceptional stability of Rydberg atoms in strong laser fields extending the range of observation to much higher intensities. Corresponding field amplitudes of more than 1 GV/cm exceed the thresholds for static field ionization by more than 6 orders of magnitude. Most importantly, however, is our finding that a surviving atom is tagged with a measure of the laser intensity it has interacted with. Reading out this information removes uncertainty about whether the surviving atom has really seen the high intensity. The experimental results allow for an extension of the investigations on the stabilization and interaction of a quasifree electron with a strong field into the relativistic regime.

6.
Opt Express ; 20(16): 18362-9, 2012 Jul 30.
Article in English | MEDLINE | ID: mdl-23038387

ABSTRACT

We present a laser plasma based x-ray microscope for the water window employing a high-average power laser system for plasma generation. At 90 W laser power a brightness of 7.4 x 10(11) photons/(s x sr x µm(2)) was measured for the nitrogen Lyα line emission at 2.478 nm. Using a multilayer condenser mirror with 0.3 % reflectivity 10(6) photons/(µm(2) x s) were obtained in the object plane. Microscopy performed at a laser power of 60 W resolves 40 nm lines with an exposure time of 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W.

7.
Rev Sci Instrum ; 82(6): 066103, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21721738

ABSTRACT

Different metal targets were investigated as possible source material for tailored laser-produced plasma-sources. In the wavelength range from 1 to 20 nm, x-ray spectra were collected with a calibrated spectrometer with a resolution of λ/Δλ = 150 at 1 nm up to λ/Δλ = 1100 at 15 nm. Intense line emission features of highly ionized species as well as continuum-like spectra from unresolved transitions are presented. With this knowledge, the optimal target material can be identified for the envisioned application of the source in x-ray spectrometry on the high energy side of the spectra at about 1 keV. This energy is aimed for because 1 keV-radiation is ideally suited for L-shell x-ray spectroscopy with nm-depth resolution.

8.
Phys Rev Lett ; 103(13): 135003, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19905518

ABSTRACT

Laser-driven ion acceleration is capable of generating ion beams of MeV energy exhibiting unique attributes such as ultralow emittance. Research is still focusing on fundamental laser-target interactions to control further beam attributes. In this Letter we present the observation of directional ion acceleration of irradiated spherical targets through proton imaging. This feature, together with an earlier observed quasimonoenergetic proton burst makes spherical targets extremely attractive candidates for high quality, high repetition rate sources of laser accelerated particles.

9.
Rev Sci Instrum ; 80(10): 103302, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19895055

ABSTRACT

Simultaneous detection of extreme ultra-violet (XUV) and ion emission along the same line of sight provides comprehensive insight into the evolution of plasmas. This type of combined spectroscopy is applied to diagnose laser interaction with a spray target. The use of a micro-channel-plate detector assures reliable detection of both XUV and ion signals in a single laser shot. The qualitative analysis of the ion emission and XUV spectra allows to gain detailed information about the plasma conditions, and a correlation between the energetic proton emission and the XUV plasma emission can be suggested. The measured XUV emission spectrum from water spray shows efficient deceleration of laser accelerated electrons with energies up to keV in the initially cold background plasma and the collisional heating of the plasma.

10.
Nature ; 461(7268): 1261-4, 2009 Oct 29.
Article in English | MEDLINE | ID: mdl-19865167

ABSTRACT

A charged particle exposed to an oscillating electric field experiences a force proportional to the cycle-averaged intensity gradient. This so-called ponderomotive force plays a major part in a variety of physical situations such as Paul traps for charged particles, electron diffraction in strong (standing) laser fields (the Kapitza-Dirac effect) and laser-based particle acceleration. Comparably weak forces on neutral atoms in inhomogeneous light fields may arise from the dynamical polarization of an atom; these are physically similar to the cycle-averaged forces. Here we observe previously unconsidered extremely strong kinematic forces on neutral atoms in short-pulse laser fields. We identify the ponderomotive force on electrons as the driving mechanism, leading to ultrastrong acceleration of neutral atoms with a magnitude as high as approximately 10(14) times the Earth's gravitational acceleration, g. To our knowledge, this is by far the highest observed acceleration on neutral atoms in external fields and may lead to new applications in both fundamental and applied physics.

11.
Opt Lett ; 34(9): 1378-80, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19412278

ABSTRACT

We are reporting on the development of a diode-pumped chirped-pulse-amplification (CPA) laser system based on Yb:YAG thin-disk technology with a repetition rate of 100 Hz and output pulse energy in the joule range. The focus lies with the first results of the preamplifier--a regenerative amplifier (RA) and a multipass amplifier (MP). The system consists of a front end including the CPA stretcher followed by an amplifier chain based on Yb:YAG thin-disk amplifiers and the CPA compressor. It is developed in the frame of our x-ray laser (XRL) program and fulfills all requirements for pumping a plasma-based XRL in grazing incidence pumping geometry. Of course it can also be used for other interesting applications. With the RA pulse energies of more than 165 mJ can be realized. At a repetition rate of 100 Hz a stability of 0.8% (1sigma) over a period of more than 45 min has been measured. The optical-to-optical efficiency is 14%. The following MP amplifier can increase the pulse energy to more than 300 mJ. A nearly bandwidth-limited recompression to less than 2 ps could be demonstrated.

12.
Phys Rev Lett ; 102(11): 113002, 2009 Mar 20.
Article in English | MEDLINE | ID: mdl-19392198

ABSTRACT

We observe fragmentation of H2 molecules exposed to strong laser fields into excited neutral atoms. The measured excited neutral fragment spectrum resembles the ionic fragmentation spectrum including peaks due to bond softening and Coulomb explosion. To explain the occurrence of excited neutral fragments and their high kinetic energy, we argue that the recently investigated phenomenon of frustrated tunnel ionization is also at work in the neutralization of H+ ions into excited H atoms. In this process the tunneled electron does not gain enough drift energy from the laser field to escape the Coulomb potential and is recaptured. Calculation of classical trajectories as well as a correlated detection measurement of neutral excited H and H+ ions support the mechanism.

13.
Phys Rev Lett ; 103(24): 245003, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-20366205

ABSTRACT

We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5x10(19) W/cm2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C6+ ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.

14.
Phys Rev Lett ; 101(23): 233001, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-19113543

ABSTRACT

In the tunneling regime of strong laser field ionization we measure a substantial fraction of neutral atoms surviving the laser pulse in excited states. The measured excited neutral atom yield extends over several orders of magnitude as a function of laser intensity. Our findings are compatible with the strong-field tunneling-plus-rescattering model, confirming the existence of a widely unexplored neutral exit channel (frustrated tunneling ionization). Strong experimental support for this mechanism as origin of excited neutral atoms stems from the dependence of the excited neutral yield on the laser ellipticity, which is as expected for a rescattering process. Theoretical support for the proposed mechanism comes from the agreement of the neutral excited state distribution centered at n = 6-10 obtained from both, a full quantum mechanical and a semiclassical calculation, in agreement with the experimental results.

15.
Rev Sci Instrum ; 79(3): 033303, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18377003

ABSTRACT

Laser accelerated proton beams have been used for field characterization in expanding plasmas. The Thomson parabola spectrometer, as a charged particles analyzer, also allows precise measurement of the charged particles' trajectories. The proton's deflections by fast changing plasma fields can be measured with the new design of the Thomson parabola spectrometer and, therefore, it can be applied for proton deflectometry. It is shown that from resulting spectrograms the plasma field dynamics can be reconstructed with high temporal resolution. In a proof-of-principle experiment, a weakly relativistic plasma expansion is studied as an example.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(1 Pt 2): 016403, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18351940

ABSTRACT

Two different laser energy absorption mechanisms at the front side of a laser-irradiated foil have been found to occur, such that two distinct relativistic electron beams with different properties are produced. One beam arises from the ponderomotively driven electrons propagating in the laser propagation direction, and the other is the result of electrons driven by resonance absorption normal to the target surface. These properties become evident at the rear surface of the target, where they give rise to two spatially separated sources of ions with distinguishable characteristics when ultrashort (40fs) high-intensity laser pulses irradiate a foil at 45 degrees incidence. The laser pulse intensity and the contrast ratio are crucial. One can establish conditions such that one or the other of the laser energy absorption mechanisms is dominant, and thereby one can control the ion acceleration scenarios. The observations are confirmed by particle-in-cell (PIC) simulations.

17.
Phys Rev Lett ; 96(14): 145006, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-16712088

ABSTRACT

We report on the generation and laser acceleration of bunches of energetic deuterons with a small energy spread at about 2 MeV. This quasimonoenergetic peak within the ion energy spectrum was observed when heavy-water microdroplets were irradiated with ultrashort laser pulses of about 40 fs duration and high (10(-8)) temporal contrast, at an intensity of 10(19) W/cm(2). The results can be explained by a simple physical model related to spatial separation of two ion species within a finite-volume target. The production of quasimonoenergetic ions is a long-standing goal in laser-particle acceleration; it could have diverse applications such as in medicine or in the development of future compact ion accelerators.

18.
Opt Lett ; 30(8): 923-5, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15865400

ABSTRACT

We demonstrate a double chirped-pulse-amplification (CPA) Ti: sapphire laser system that includes two CPA stages with intermediate nonlinear temporal pulse filtering. The method makes it possible to reduce substantially the background of amplified spontaneous emission (ASE), including prepulses and postpulses. An ASE temporal contrast of 10(10) was demonstrated at 20 mJ of output energy and 50-fs pulse duration. The demonstrated scheme is applicable to petawatt power-level laser systems.

19.
Phys Rev Lett ; 94(5): 053602, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15783638

ABSTRACT

We have investigated atomic ionization dynamics in Kr in the transition regime from nonrelativistic to relativistic laser intensities (10(16) to 10(18) W/cm2) by measuring yields of highly charged ions stemming from an inner shell. Interpretation of the data is focused on the applicability of the single active electron description, which requires fully relaxed core states between successive ionization steps. In particular, we are concerned with transient core polarization or alignment effects originating from the strong dependence of the ionization rates on the magnetic quantum number. We found that for intense laser pulses with 40 fs pulse width internal m-mixing processes appear to be sufficiently fast to erase any transient core polarization.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 2): 056401, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15600759

ABSTRACT

An efficient acceleration of energetic ions is observed when small heavy-water droplets of approximately 20 microm diameter are exposed to ultrafast (approximately 40 fs) Ti:sapphire laser pulses of up to 10(19) W/cm2 intensity. Quantitative measurements of deuteron and neutron spectra were done, allowing one to analyze the outward and inward directed deuteron acceleration from the droplet. Neutron spectroscopy based on the D (d,n) fusion reaction was accomplished in four different spatial directions. The energy shifts of those fusion neutrons produced inside the exploding droplet reflect a remaining deuteron acceleration inside the irradiated droplet along the axis of the incident laser beam. The overall neutron yield of the microdroplets is relatively small as a result of the dominant outward directed acceleration of the deuterons with 1200 neutrons/shot. Relying on the "explosion-like" acceleration of such spherical droplet targets we have developed a spray target consisting of heavy-water microspheres with diameters of 150 nm . Both the high deuteron energies of up to 1 MeV resulting from the irradiation intensity of approximately 10(19) W/cm2 as well as the collisions between the deuterons and the surrounding spray delivered about one order of magnitude more neutrons than the single-droplet system. The approximately 6 x 10(3) neutrons per laser pulse from the spray can be attributed to an efficient deuteron release from a significantly smaller laser excited volume as from deuterium-cluster targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...