Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 886585, 2022.
Article in English | MEDLINE | ID: mdl-35865920

ABSTRACT

Background: The advance of the COVID-19 pandemic and spread of SARS-CoV-2 around the world has generated the emergence of new genomic variants. Those variants with possible clinical and therapeutic implications have been classified as variants of concern (VOCs) and variants of interest (VOIs). Objective: This study aims to describe the COVID-19 pandemic and build the evolutionary and demographic dynamics of SARS-CoV-2 populations in Mexico, with emphasis on VOCs. Methods: 30,645 complete genomes of SARS-CoV-2 from Mexico were obtained from GISAID databases up to January 25, 2022. A lineage assignment and phylogenetic analysis was completed, and demographic history for Alpha, Gamma, Delta and Omicron VOCs, and the Mexican variant (B.1.1.519) was performed. Results: 148 variants were detected among the 30,645 genomes analyzed with the Delta variant being the most prevalent in the country, representing 49.7% of all genomes. Conclusion: The COVID-19 pandemic in Mexico was caused by several introductions of SARS-CoV-2, mainly from the United States of America and Europe, followed by local transmission. Regional molecular epidemiological surveillance must implement to detect emergence, introductions and spread of new variants with biologically important mutations.

2.
BMC Res Notes ; 13(1): 398, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32854762

ABSTRACT

OBJECTIVE: In December 2019 a novel coronavirus (SARS-CoV-2) that is causing the current COVID-19 pandemic was identified in Wuhan, China. Many questions have been raised about its origin and adaptation to humans. In the present work we performed a genetic analysis of the Spike glycoprotein (S) of SARS-CoV-2 and other related coronaviruses (CoVs) isolated from different hosts in order to trace the evolutionary history of this protein and the adaptation of SARS-CoV-2 to humans. RESULTS: Based on the sequence analysis of the S gene, we suggest that the origin of SARS-CoV-2 is the result of recombination events between bat and pangolin CoVs. The hybrid SARS-CoV-2 ancestor jumped to humans and has been maintained by natural selection. Although the S protein of RaTG13 bat CoV has a high nucleotide identity with the S protein of SARS-CoV-2, the phylogenetic tree and the haplotype network suggest a non-direct parental relationship between these CoVs. Moreover, it is likely that the basic function of the receptor-binding domain (RBD) of S protein was acquired by the SARS-CoV-2 from the MP789 pangolin CoV by recombination and it has been highly conserved.


Subject(s)
Betacoronavirus/genetics , Coronaviridae/genetics , Recombination, Genetic , Spike Glycoprotein, Coronavirus/genetics , Adaptation, Biological/genetics , Angiotensin-Converting Enzyme 2 , Animals , Binding Sites/genetics , Chiroptera/virology , Eutheria/virology , Evolution, Molecular , Furin/metabolism , Host Specificity , Humans , Peptidyl-Dipeptidase A/metabolism , Phylogeny , SARS-CoV-2 , Selection, Genetic , Spike Glycoprotein, Coronavirus/metabolism
3.
Front Microbiol ; 9: 828, 2018.
Article in English | MEDLINE | ID: mdl-29867787

ABSTRACT

Serratia marcescens, a member of the Enterobacteriaceae family, was long thought to be a non-pathogenic bacterium prevalent in environmental habitats. Together with other members of this genus, it has emerged in recent years as an opportunistic nosocomial pathogen causing various types of infections. One important feature of pathogens belonging to this genus is their intrinsic and acquired resistance to a variety of antibiotic families, including ß-lactam, aminoglycosides, quinolones and polypeptide antibiotics. The aim of this study was to elucidate which genes participate in the intrinsic and acquired antibiotic resistance of this genus in order to determine the Serratia genus resistome. We performed phylogenomic and comparative genomic analyses using 32 Serratia spp. genomes deposited in the NCBI GenBank from strains isolated from different ecological niches and different lifestyles. S. marcescens strain SmUNAM836, which was previously isolated from a Mexican adult with obstructive pulmonary disease, was included in this study. The results show that most of the antibiotic resistance genes (ARGs) were found on the chromosome, and to a lesser degree, on plasmids and transposons acquired through horizontal gene transfer. Four strains contained the gyrA point mutation in codon Ser83 that confers quinolone resistance. Pathogenic and environmental isolates presented a high number of ARGs, especially genes associated with efflux systems. Pathogenic strains, specifically nosocomial strains, presented more acquired resistance genes than environmental isolates. We may conclude that the environment provides a natural reservoir for antibiotic resistance, which has been underestimated in the medical field.

4.
Genome Announc ; 4(1)2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26798087

ABSTRACT

Serratia marcescens SmUNAM836 is a multidrug-resistant clinical strain isolated in Mexico City from a patient with chronic obstructive pulmonary disease. Its complete genome sequence was determined using PacBio RS II SMRT technology, consisting of a 5.2-Mb chromosome and a 26.3-kb plasmid, encoding multiple resistance determinants and virulence factors.

5.
PLoS One ; 7(5): e37459, 2012.
Article in English | MEDLINE | ID: mdl-22662157

ABSTRACT

Various genomic islands, PAPI-1, PAPI-2, PAGI-1, PAGI-2, PAGI-3, and PAGI-4, and the element pKLC102 have been characterized in different P. aeruginosa strains from diverse habitats and geographical locations. Chromosomal DNA macroarray of 100 P. aeruginosa strains isolated from 85 unrelated patients hospitalized in an intensive care unit was created to assess the occurrence of these genomic islands (GEIs). The macroarray was then hybridized with labeled probes derived from each genomic island. In addition, PFGE patterns with SpeI, frequency of virulence genes, and antimicrobial resistance patterns of the strains were studied. Our results showed that almost all P. aeruginosa strains presented up to eight virulence genes. By SpeI macrorestriction fragment analysis we were able to identify 49 restriction patterns; 35 patterns correspond to single strains and the remaining 14 to strains subgroup (a-n). Most of the strains showed variation in number or composition of GEIs and a specific antimicrobial pattern indicating that each strain was an unrelated isolate. In terms of the number of genomic islands per strain, 7 GEIs were found in 34% of the strains, 6 in 18%, 5 in 12%, 4 in 14%, 3 in 10%, 2 in 7%, and 1 in 4%; only one isolate did not present any GEI. The genomic islands PAPI-1 and PAPI-2 and the element pKLC102 were the most frequently detected. The analysis of the location of each GEI in the chromosome of two strains show that the islands PAGI-3, PAPI-1, PAPI-2 and pKLC102 are present in the insertion site previously reported, but that PAGI-2 and PAGI-4 are inserted in another chromosome place in a site not characterized yet. In conclusion our data show that P. aeruginosa strains exhibited an epidemic population structure with horizontal transfer of DNA resulting in a high frequency of GEIs.


Subject(s)
Genomic Islands , Pseudomonas aeruginosa/genetics , Chromosomes, Bacterial , Cross Infection/epidemiology , Genes, Bacterial , Genetic Variation , Genotype , Humans , Intensive Care Units , Microbial Sensitivity Tests , Phylogeny , Pseudomonas Infections/epidemiology , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/pathogenicity , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...