Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Soft Matter ; 19(48): 9369-9378, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37856239

ABSTRACT

Numerous natural and industrial processes involve the mixed displacement of liquids, gases and granular materials through confining structures. However, understanding such three-phase flows remains a formidable challenge, despite their tremendous economic and environmental impact. To unveil the complex interplay of capillary and granular stresses in such flows, we consider here a model configuration where a frictional fluid (an immersed sedimented granular layer) is slowly drained out of a horizontal capillary. Analyzing how liquid/air menisci displace particles from such granular beds, we reveal various drainage patterns, notably the periodic formation of dunes, analogous to road washboard instability. Considering the competitive role of friction and capillarity, a 2D theoretical approach supported by numerical simulations of a meniscus bulldozing a front of particles provides quantitative criteria for the emergence of those dunes. A key element is the strong increase of the frictional forces, as the bulldozed particles accumulate and bend the meniscus horizontally. Interestingly, this frictional enhancement with the attack angle is also crucial in small-legged animals' locomotion over granular media.

2.
Nat Commun ; 14(1): 3044, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37236971

ABSTRACT

Multiphase flows involving granular materials are complex and prone to pattern formation caused by competing mechanical and hydrodynamic interactions. Here we study the interplay between granular bulldozing and the stabilising effect of viscous pressure gradients in the invading fluid. Injection of aqueous solutions into layers of dry, hydrophobic grains represent a viscously stable scenario where we observe a transition from growth of a single frictional finger to simultaneous growth of multiple fingers as viscous forces are increased. The pattern is made more compact by the internal viscous pressure gradient, ultimately resulting in a fully stabilised front of frictional fingers advancing as a radial spoke pattern.

3.
Cryst Growth Des ; 22(4): 2433-2440, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35401053

ABSTRACT

We use high-speed photography to observe the dendritic freezing of ice between two closely spaced parallel plates. Measuring the propagation speeds of dendrites, we investigate whether there is a confinement-induced thermal influence upon the speed beyond that provided by a single surface. Plates of thermally insulating plastic and moderately thermally conductive glass are used alone and in combination, at temperatures between -10.6 and -4.8 °C, with separations between 17 and 135 µm wide. No effect of confinement was detected for propagation on glass surfaces, but a possible slowing of propagation speed was seen between insulating plates. The pattern of dendritic growth was also studied, with a change from curving to straight dendrites being strongly associated with a switch from a glass to a plastic substrate.

4.
Phys Rev E ; 104(4-1): 044908, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781574

ABSTRACT

Silo discharge has been extensively studied for decades although questions remain regarding the nature of the velocity field, particularly for submerged systems. In this work, fluid-driven granular drainage was performed in a quasi-two-dimensional silo with grains submerged in fluid. While the observed Gaussian velocity profiles were generally consistent with current diffusion models, the diffusion length was found to significantly decrease with height in contrast to the increases previously seen in dry silos. We propose a phenomenological anomalous diffusion model for the spreading of the flow upwards in the cell, with the fluid-driven flows we study here falling in the category of subdiffusive behavior. As the viscous characteristics of the system were amplified, the diffusion length increased and the shape of the flowing zone in the silo changed, deviating further from the parabolic form predicted by traditional normal diffusion models, in effect becoming more subdiffusive as quantified by a decreasing diffusion exponent.

5.
Phys Rev Lett ; 117(2): 028002, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27447527

ABSTRACT

We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition-and complete evacuation of the granular suspension-when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime.

6.
Article in English | MEDLINE | ID: mdl-26465465

ABSTRACT

Experiments on confined two-phase flow systems, involving air and a dense suspension, have revealed a diverse set of flow morphologies. As the air displaces the suspension, the beads that make up the suspension can accumulate along the interface. The dynamics can generate "frictional fingers" of air coated by densely packed grains. We present here a simplified model for the dynamics together with a new numerical strategy for simulating the frictional finger behavior. The model is based on the yield stress criterion of the interface. The discretization scheme allows for simulating a larger range of structures than previous approaches. We further make theoretical predictions for the characteristic width associated with the frictional fingers, based on the yield stress criterion, and compare these to experimental results. The agreement between theory and experiments validates our model and allows us to estimate the unknown parameter in the yield stress criterion, which we use in the simulations.

7.
Article in English | MEDLINE | ID: mdl-26066170

ABSTRACT

Submerged granular material exhibits a wide range of behavior when the saturating fluid is slowly displaced by a gas phase. In confined systems, the moving interface between the invading gas and the fluid/grain mixture can cause beads to jam, and induce intermittency in the dynamics. Here, we study the stability of layers of saturated jammed beads around stuck air bubbles, and the deformation mechanism leading to air channel formations in these layers. We describe a two-dimensional extension of a previous model of the effective stress in the jammed packing. The effect of the tangential stress component on the yield stress is discussed, in particular how arching effects may impact the yield threshold. We further develop a linear stability analysis, to study undulations which develop under certain experimental conditions at the air-liquid interface. The linear analysis gives estimates for the most unstable wavelengths for the initial growth of the perturbations. The estimates correspond well with peak to peak length measurements of the experimentally observed undulations.

8.
J Biophotonics ; 5(2): 159-67, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22105878

ABSTRACT

This paper addresses the scar tissue maturation process that occurs stepwise, and calls for reliable classification. The structure of collagen imaged by nonlinear optical microscopy (NLOM) in post-burn hypertrophic and mature scar, as well as in normal skin, appeared to distinguish these maturation steps. However, it was a discrimination analysis, demonstrated here, that automated and quantified the scar tissue maturation process. The achieved scar classification accuracy was as high as 96%. The combination of NLOM and discrimination analysis is believed to be instrumental in gaining insight into the scar formation, for express diagnosis of scar and surgery planning.


Subject(s)
Cicatrix/pathology , Microscopy/methods , Optics and Photonics , Adolescent , Automation , Biopsy/methods , Burns/pathology , Child , Child, Preschool , Cicatrix, Hypertrophic/pathology , Collagen/chemistry , Female , Humans , Hypertrophy/pathology , Male , Reproducibility of Results , Skin/pathology
9.
Opt Lett ; 36(15): 3009-11, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21808388

ABSTRACT

We introduce a retroemitter (REM) device comprising a planar glass bead set placed on a luminescent material substrate, which converges an excitation beam into a set of foci (voxels). The in-voxel emission is collimated by the beads, and propagates upstream over the long range, unlike the out-of-voxel emission spreading in all angles. The REM signal contrast is characterized as a function of incidence and observation angles and propagation distance. REM signal contrasts of approximately 20 and 1600 were found for the organic fluorescent dye and upconverting phosphor substrates, respectively. In the latter case, nonlinear optical signal enhancement plays a role in addition to the retroemission effect. This allows centimeter-scale REM patterns to be read out at the meter-scale distance using eye-safe sub-mW/cm(2) excitation intensities.


Subject(s)
Glass/chemistry , Luminescent Measurements , Microspheres , Optical Devices
10.
Lasers Med Sci ; 26(3): 401-13, 2011 May.
Article in English | MEDLINE | ID: mdl-21190054

ABSTRACT

The effects of non-ablative infrared (IR) laser treatment of collagenous tissue have been commonly interpreted in terms of collagen denaturation spread over the laser-heated tissue area. In this work, the existing model is refined to account for the recently reported laser-treated tissue heterogeneity and complex collagen degradation pattern using comprehensive optical imaging and calorimetry toolkits. Patella ligament (PL) provided a simple model of type I collagen tissue containing its full structural content from triple-helix molecules to gross architecture. PL ex vivo was subjected to IR laser treatments (laser spot, 1.6 mm) of equal dose, where the tissue temperature reached the collagen denaturation temperature of 60 ± 2°C at the laser spot epicenterin the first regime, and was limited to 67 ± 2°C in the second regime. The collagen network was analyzed versus distance from the epicenter. Experimental characterization of the collagenous tissue at all structural levels included cross-polarization optical coherence tomography, nonlinear optical microscopy, light microscopy/histology, and differential scanning calorimetry. Regressive rearrangement of the PL collagen network was found to spread well outside the laser spot epicenter (>2 mm) and was accompanied by multilevel hierarchical reorganization of collagen. Four zones of distinct optical and morphological properties were identified, all elliptical in shape, and elongated in the direction perpendicular to the PL long axis. Although the collagen transformation into a random-coil molecular structure was occasionally observed, it was mechanical integrity of the supramolecular structures that was primarily compromised. We found that the structural rearrangement of the collagen network related primarily to the heat-induced thermo-mechanical effects rather than molecular unfolding. The current body of evidence supports the notion that the supramolecular collagen structure suffered degradation of various degrees, which gave rise to the observed zonal character of the laser-treated lesion.


Subject(s)
Low-Level Light Therapy , Patellar Ligament/radiation effects , Animals , Calorimetry, Differential Scanning , Collagen/chemistry , Collagen/radiation effects , Female , Low-Level Light Therapy/adverse effects , Male , Optical Phenomena , Patellar Ligament/metabolism , Patellar Ligament/pathology , Protein Denaturation/radiation effects , Rabbits , Tomography, Optical Coherence
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(2 Pt 1): 021301, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18352016

ABSTRACT

Pattern forming processes are abundant in nature. Here, we report on a particular pattern forming process. Upon withdrawal of fluid from a particle-fluid dispersion in a Hele-Shaw cell, the particles are shown to be left behind in intriguing mazelike patterns. The particles, initially being uniformly spread out in a disc, are slowly pulled inwards and together by capillary and pressure forces. Invading air forms branching fingers, whereas the particles are compiled into comparably narrow branches. These branches are connected in a treelike structure, taking the form of a maze. The characteristic length scale within the structure is found to decrease with the volume fraction of the particles and increase with the plate separation in the Hele-Shaw cell. We present a simulator designed to simulate this phenomenon, which reproduces qualitatively and quantitatively the experiments, as well as a theory that can predict the observed wavelengths.

SELECTION OF CITATIONS
SEARCH DETAIL
...