Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 176(3): e14311, 2024.
Article in English | MEDLINE | ID: mdl-38715208

ABSTRACT

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.


Subject(s)
CRISPR-Cas Systems , Chlamydomonas reinhardtii , Cytokinins , Disease Resistance , Nicotiana , Plant Diseases , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/immunology , Cytokinins/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Mutation
2.
Phytochemistry ; 145: 77-84, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29107809

ABSTRACT

Sanguinarine is a benzo[c]phenanthridine alkaloid with interesting cytotoxic properties, such as induction of oxidative DNA damage and very rapid apoptosis, which is not mediated by p53-dependent signaling. It has been previously documented that sanguinarine is reduced with NADH even in absence of any enzymes while being converted to its dihydro form. We found that the dark blue fluorescent species, observed during sanguinarine reduction with NADH and misinterpreted by Matkar et al. (Arch. Biochem. Biophys. 2008, 477, 43-52) as an anionic form of the alkaloid, is a covalent adduct formed by the interaction of NADH and sanguinarine. The covalent adduct is then converted slowly to the products, dihydrosanguinarine and NAD+, in the second step of reduction. The product of the reduction, dihydrosanguinarine, was continually re-oxidized by the atmospheric oxygen back to sanguinarine, resulting in further reacting with NADH and eventually depleting all NADH molecules. The ability of sanguinarine to diminish the pool of NADH and NADPH is further considered when explaining the sanguinarine-induced apoptosis in living cells.


Subject(s)
Benzophenanthridines/metabolism , Isoquinolines/metabolism , NAD/metabolism , Benzophenanthridines/chemistry , Benzophenanthridines/pharmacology , Isoquinolines/chemistry , Isoquinolines/pharmacology , Molecular Structure , NAD/chemistry , Oxygen/chemistry , Oxygen/metabolism
3.
J Exp Bot ; 67(17): 5173-85, 2016 09.
Article in English | MEDLINE | ID: mdl-27604805

ABSTRACT

Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence.


Subject(s)
Cell Membrane/physiology , Disease Resistance/physiology , Membrane Fluidity/physiology , Arabidopsis/physiology , Cell Membrane/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Plant Diseases , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , Spectrometry, Fluorescence , Nicotiana/physiology
4.
J Pharm Biomed Anal ; 121: 174-180, 2016 Mar 20.
Article in English | MEDLINE | ID: mdl-26808066

ABSTRACT

Selected benzo[c]phenathridine alkaloids were biotransformed using rat liver microsomes and identified by liquid chromatography and mass spectrometry. While the metabolites of commercially available sanguinarine and chelerythrine have been studied in detail, data about the metabolism of the minor alkaloids remained unknown. Reactions involved in transformation include single and/or double O-demethylation, demethylenation, reduction, and hydroxylation. Two metabolites, when isolated, purified and tested for toxicity, were found to be less toxic than the original compounds.


Subject(s)
Alkaloids/metabolism , Benzophenanthridines/metabolism , Isoquinolines/adverse effects , Isoquinolines/chemistry , Animals , Benzophenanthridines/adverse effects , Benzophenanthridines/chemistry , Chromatography, Liquid/methods , Hydroxylation , Male , Mass Spectrometry/methods , Microsomes, Liver/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...