Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leuk Res ; 52: 8-19, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27855286

ABSTRACT

Several novel compounds have been developed for the treatment of different types of leukemia. In the present study, we have assessed the in vitro effects of Casiopeina III-Ea, a copper-containing small molecule, on cells from patients with Chronic Myeloid Leukemia (CML). We included primary CD34+ Lineage-negative (Lin-) cells selected from CML bone marrow, as well as the K562 and MEG01 cell lines. Bone marrow cells obtained from normal individuals - both total mononuclear cells as well as CD34+ Lin- cells- were used as controls. IC50 corresponded to 0.5µM for K562 cells, 0.63µM for MEG01 cells, 0.38µM for CML CD34+ lin- cells, and 1.0µM for normal CD34+ lin- cells. Proliferation and expansion were also inhibited to significantly higher extents in cultures of CML cells as compared to their normal counterparts. All these effects seemed to occur via a bcr-abl transcription-independent mechanism that involved a delay in cell division, an increase in cell death, generation of Reactive Oxygen Species and changes in cell cycle. Our results demonstrate that Casiopeina III-Ea possesses strong antileukemic activity in vitro, and warrant further preclinical (animal) studies to assess such effects in vivo.


Subject(s)
Coordination Complexes/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/drug effects , Phenanthrolines/pharmacology , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Cell Death/drug effects , Cell Proliferation/drug effects , Copper , Hematopoietic Stem Cells/drug effects , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Neoplastic Stem Cells/pathology , Reactive Oxygen Species , Tumor Cells, Cultured
2.
Cell Cycle ; 15(9): 1276-87, 2016 05 02.
Article in English | MEDLINE | ID: mdl-26985855

ABSTRACT

Chronic Myeloid Leukemia (CML) is sustained by a small population of cells with stem cell characteristics known as Leukemic Stem Cells that are positive to BCR-ABL fusion protein, involved with several abnormalities in cell proliferation, expansion, apoptosis and cell cycle regulation. Current treatment options for CML involve the use of Tirosine Kinase Inhibitor (Imatinib, Nilotinib and Dasatinib), that efficiently reduce proliferation proliferative cells but do not kill non proliferating CML primitive cells that remain and contributes to the persistence of the disease. In order to understand the role of Cyclin Dependent Kinase Inhibitors in CML LSC permanence after TKI treatment, in this study we analyzed cell cycle status, the levels of several CDKIs and the subcellular localization of such molecules in different CML cell lines, as well as primary CD34(+)CD38(-)lin(-) LSC and HSC. Our results demonstrate that cellular location of p18(INK4c) and p57(Kip2) seems to be implicated in the antiproliferative activity of Imatinib and Dasatinib in CML cells and also suggest that the permanence of quiescent stem cells after TKI treatment could be associated with a decrease in p18(INK4c) and p57(Kip2) nuclear location. The differences in p18(INK4c)and p57(Kip2)activities in CML and normal stem cells suggest a different cell cycle regulation and provide a platform that could be considered in the development of new therapeutic options to eliminate LSC.


Subject(s)
Cell Cycle Checkpoints/drug effects , Cyclin-Dependent Kinase Inhibitor p18/metabolism , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/pathology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dasatinib/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Humans , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Protein Transport/drug effects , Resting Phase, Cell Cycle/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...