Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; : PDIS12232726RE, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38499976

ABSTRACT

Meloidogyne enterolobii is an emerging global threat and is damaging to sweetpotato (Ipomoea batatas) production in the southeast United States. Nematicide application is one of the few management strategies currently available against this nematode, and field testing is urgently needed. The objective of this study was to assess common nematicides for management of M. enterolobii and nontarget effects on free-living nematodes in sweetpotato field production. Treatments were (i) untreated control, (ii) fumigation using 1,3-dichloropropene, or at-transplant drench of fluorinated nematicides (iii) fluazaindolizine, (iv) fluopyram, or (v, vi) fluensulfone at 2 or 4 kg a.i./ha. In 2022, a field trial was conducted under severe M. enterolobii pressure and was repeated in 2023 in the same location without treatment rerandomization. Fumigation using 1,3-dichloropropene (1,3-D) was the only consistently effective nematicide at improving marketable yield relative to control and also consistently reduced most storage root galling measurements and midseason Meloidogyne soil abundances. Fluensulfone at 4 kg a.i./ha consistently improved total yield but not marketable yield, whereas fluensulfone at 2 kg a.i./ha, fluazaindolizine, and fluopyram did not improve yield. Each fluorinated nematicide treatment reduced at least one nematode symptom or nematode soil abundances relative to control, but none provided consistent benefits across years. Even with 1,3-D fumigation, yield was poor, and none of the nematicide treatments provided a significant return on investment relative to forgoing nematicide application. There were minimal effects on free-living nematodes. In summary, 1,3-D is an effective nematicide for M. enterolobii management, but additional management will be needed under severe M. enterolobii pressure.

2.
J Nematol ; 55(1): 20230041, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37868787

ABSTRACT

Rotylenchulus reniformis (reniform nematode, RN) is among the most important nematodes affecting cotton. Cultural practices, such as rotation and soil amendment, are established methods for managing RN. Management may be enhanced if crop residue has biofumigant properties against RN. The objective was to evaluate the efficacy of winter crop amendments for managing RN in the greenhouse. Reniform nematode-infested soil was amended with dry or fresh organic matter (OM, 2% w/w) from winter crops - canola, carinata, hairy vetch, oat, or no crop. Cotton was subsequently grown in this soil. Independent of the crop, dry OM amendments were more effective than no amendment at managing RN, while fresh OM amendments were not. Soil and root RN abundances and reproduction factors were generally lower in Trials 1 and 3 for dry OM than fresh OM amendments or control without OM. In Trial 2, none of the OM treatments reduced RN parameters compared with no OM control. In general, when compared to plants without RN or OM, RN did not produce significant changes in growth parameters but did affect physiology (Soil Plant Analysis Development, or SPAD, values). In conclusion, dry OM amendments can help manage RN, crop growth does not always relate to RN abundances, and SPAD values could help indicate RN presence.

3.
J Nematol ; 55(1): 20230035, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37712053

ABSTRACT

Rotylenchulus reniformis (reniform nematode, RN) is an important pathogen in cotton production. Cultural practices such as crop rotation and biofumigation-management of soil pathogens by biocidal compounds from crop residues-may help manage RN. The objective of this study was to evaluate the efficacy of winter crops for RN management through combinations of rotation and crop residue incorporation in a cotton greenhouse experiment. A total of 10 treatments were evaluated in soil inoculated with RN: three winter crops (carinata, oat, or hairy vetch) grown in rotation with no shoot organic matter (OM) incorporated (1-3), fresh shoot OM incorporated (4-6), or dry shoot OM incorporated (7-9), and a fallow control (10). Roots were re-incorporated in all treatments except fallow. Subsequently, cotton was grown. Oat and fallow were better rotation crops to lower soil RN abundances at winter crop termination than hairy vetch and carinata. After the OM incorporation treatments and cotton growth, oat was generally more effective at managing RN in cotton than carinata or hairy vetch. Within each crop, incorporation treatment generally did not affect RN management. Cotton growth was not consistently affected by the treatments.

4.
J Nematol ; 55(1): 20230006, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37143483

ABSTRACT

Nematodes are the most abundant and diverse animals on the planet but lack representation in biodiversity research. This presents a problem for studying nematode diversity, particularly when molecular tools (i.e., barcoding and metabarcoding) rely on well-populated and curated reference databases, which are absent for nematodes. To improve molecular identification and the assessment of nematode diversity, we created and curated an 18S rRNA database specific to nematodes (18S-NemaBase) using sequences sourced from the most recent publicly available 18S rRNA SILVA v138 database. As part of the curation process, taxonomic strings were standardized to contain a fixed number of taxonomic ranks relevant to nematology and updated for the most recent accepted nematode classifications. In addition, apparent erroneous sequences were removed. To test the efficacy and accuracy of 18S-NemaBase, we compared it to an older but also curated SILVA v111 and the newest SILVA v138 by assigning taxonomies and analyzing the diversity of a nematode dataset from the Western Nebraska Sandhills. We showed that 18S-NemaBase provided more accurate taxonomic assignments and diversity assessments than either version of SILVA, with a much easier workflow and no need for manual corrections. Additionally, observed diversity further improved when 18S-NemaBase was supplemented with reference sequences from nematodes present in the study site. Although the 18S-NemaBase is a step in the right direction, a concerted effort to increase the number of high-quality, accessible, full-length nematode reference sequences is more important now than ever.

5.
J Nematol ; 54(1): 20220019, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35860512

ABSTRACT

Sting nematode is acutely damaging to a wide range of crops and is relatively common in sandy soils in the southeastern United States. Sweetpotato is an important crop in this region, and its production may be expanding to localities where sting nematode is an important pest. Despite this, the relationship between sweetpotato and sting nematode is not well-defined. Therefore, the objectives of this study were to assess (1) the relative host status of sweetpotato for sting nematode and (2) damage potential of sting nematode on sweetpotato in repeated greenhouse experiments. A known sting nematode host (field corn), a known poor host (sunn hemp), and sweetpotato cultivars susceptible ('Beauregard') and resistant ('Covington') to southern root-knot nematode were challenged with sting nematode. In both trials, field corn supported greater final soil sting nematode abundances than sunn hemp or either sweetpotato cultivar. Based on the average reproductive factor, field corn was confirmed as a susceptible host, whereas sunn hemp and sweetpotato were poor hosts. Sting nematode did not impair the growth of any crop, suggesting greenhouse conditions were not conducive to damage since field corn sustains damage in field conditions. These results suggest that sunn hemp and sweetpotato could be useful rotation crops for managing sting nematode, but future work is needed to assess sting nematode pathogenicity on these crops under field conditions.

6.
J Nematol ; 532021.
Article in English | MEDLINE | ID: mdl-34296191

ABSTRACT

Meloidogyne incognita (southern root-knot nematode, SRKN) is a major pest in tomato (Solanum lycopersicum) production in the Southeastern United States. Management has relied on fumigant and carbamate non-fumigant nematicides. New non-fumigant nematicides, such as fluopyram, are available and field evaluation of new nematicides is needed. The objectives of this research were to assess the efficacy of new (fluopyram) and established (oxamyl) non-fumigant nematicides as well as fumigation (1,3-dichloropropene) for (1) SRKN management, and (2) impacts on total soil abundances of non-target, free-living nematodes in field tests in Florida. Fumigation with 1,3-D consistently managed SRKN and, in two of three trials, increased yield relative to untreated. Oxamyl and fluopyram also had efficacy in managing SRKN, but were inconsistent from year to year. Oxamyl provided better root galling control than fluopyram in one of two trials, but otherwise those nematicides provided similar SRKN management and yield response. Supplementing 1,3-D fumigation with fluopyram did not improve SRKN management or yield relative to fumigation alone. Fumigation consistently reduced free-living nematode abundances relative to untreated. Oxamyl and fluopyram were more inconsistent, but always reduced total free-living nematode abundances when effective against SRKN. In summary, while non-fumigant nematicides provided some management of SRKN, fumigation continued to be the most consistent option. All nematicides had deleterious effects on free-living nematodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...