Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 384(1-3): 214-20, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17659764

ABSTRACT

DEET (N,N-diethyl-m-toluamide) is the active ingredient of most commercial insect repellents. This compound has commonly been detected in aquatic water samples from around the world indicating that DEET is both mobile and persistent, despite earlier assumptions that DEET was unlikely to enter aquatic ecosystems. DEET's registration category does not require an ecological risk assessment, thus information on the ecological toxicity of DEET is sparse. This paper reviews the presence of DEET in aqueous samples from around the world (e.g. drinking water, streams, open seawater, groundwater and treated effluent) with reported DEET concentrations ranging from 40-3000 ng L(-1). In addition, new DEET data collected from 36 sites in coastal waterways from eastern Australia (detections ranging from 8 to 1500 ng L(-1)) are examined. A summary of new and existing toxicity data are discussed with an emphasis on preparing a preliminary risk assessment for DEET in the aquatic environment. Collated information on DEET in the aquatic environment suggests risk to aquatic biota at observed environmental concentrations is minimal. However, the information available was not sufficient to conduct a full risk assessment due to data deficiencies in source characterisation, transport mechanisms, fate, and ecotoxicity studies. These risks warrant further investigation due to the high frequency that this organic contaminant is detected in aquatic environments around the world.


Subject(s)
DEET/toxicity , Water Pollutants, Chemical/toxicity , Water/chemistry , Animals , Australia , DEET/analysis , Environmental Monitoring , Risk Assessment , Water Pollutants, Chemical/analysis
2.
J Environ Qual ; 32(3): 988-95, 2003.
Article in English | MEDLINE | ID: mdl-12809299

ABSTRACT

Cost-effective methods are needed to identify the presence and distribution of tritium near radioactive waste disposal and other contaminated sites. The objectives of this study were to (i) develop a simplified sample preparation method for determining tritium contamination in plants and (ii) determine if plant data could be used as an indicator of soil contamination. The method entailed collection and solar distillation of plant water from foliage, followed by filtration and adsorption of scintillation-interfering constituents on a graphite-based solid phase extraction (SPE) column. The method was evaluated using samples of creosote bush [Larrea tridentata (Sessé & Moc. ex DC.) Coville], an evergreen shrub, near a radioactive disposal area in the Mojave Desert. Laboratory tests showed that a 2-g SPE column was necessary and sufficient for accurate determination of known tritium concentrations in plant water. Comparisons of tritium concentrations in plant water determined with the solar distillation-SPE method and the standard (and more laborious) toluene-extraction method showed no significant difference between methods. Tritium concentrations in plant water and in water vapor of root-zone soil also showed no significant difference between methods. Thus, the solar distillation-SPE method provides a simple and cost-effective way to identify plant and soil contamination. The method is of sufficient accuracy to facilitate collection of plume-scale data and optimize placement of more sophisticated (and costly) monitoring equipment at contaminated sites. Although work to date has focused on one desert plant, the approach may be transferable to other species and environments after site-specific experiments.


Subject(s)
Environmental Monitoring/methods , Radioactive Waste , Soil Pollutants, Radioactive/analysis , Soil Pollutants, Radioactive/pharmacokinetics , Tritium/analysis , Tritium/pharmacokinetics , Cost-Benefit Analysis , Larrea/chemistry , Plant Leaves/chemistry , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...