Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 11: 623098, 2021.
Article in English | MEDLINE | ID: mdl-33777768

ABSTRACT

BACKGROUND: In thermal ablation of liver tumors, complete coverage of the tumor volume by the ablation volume with a sufficient ablation margin is the most important factor for treatment success. Evaluation of ablation completeness is commonly performed by visual inspection in 2D and is prone to inter-reader variability. This work aimed to introduce a standardized approach for evaluation of ablation completeness after CT-guided thermal ablation of liver tumors, using volumetric quantitative ablation margins (QAM). METHODS: A QAM computation metric based on volumetric segmentations of tumor and ablation areas and signed Euclidean surface distance maps was developed, including a novel algorithm to address QAM computation in subcapsular tumors. The code for QAM computation was verified in artificial examples of tumor and ablation spheres simulating varying scenarios of ablation margins. The applicability of the QAM metric was investigated in representative cases extracted from a prospective database of colorectal liver metastases (CRLM) treated with stereotactic microwave ablation (SMWA). RESULTS: Applicability of the proposed QAM metric was confirmed in artificial and clinical example cases. Numerical and visual options of data presentation displaying substrata of QAM distributions were proposed. For subcapsular tumors, the underestimation of tumor coverage by the ablation volume when applying an unadjusted QAM method was confirmed, supporting the benefits of using the proposed algorithm for QAM computation in these cases. The computational code for developed QAM was made publicly available, encouraging the use of a standard and objective metric in reporting ablation completeness and margins. CONCLUSION: The proposed volumetric approach for QAM computation including a novel algorithm to address subcapsular liver tumors enables precision and reproducibility in the assessment of ablation margins. The quantitative feedback on ablation completeness opens possibilities for intra-operative decision making and for refined analyses on predictability and consistency of local tumor control after thermal ablation of liver tumors.

2.
Cardiovasc Intervent Radiol ; 44(6): 968-975, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33474604

ABSTRACT

PURPOSE: Evaluate the accuracy of multiple electrode placements in IRE treatment of liver tumours using a stereotactic CT-based navigation system. METHOD: Analysing data from all IRE treatments of liver tumours at one institution until 31 December 2018. Comparing planned with validated electrode placement. Analysing lateral and angular errors and parallelism between electrode pairs RESULTS: Eighty-four tumours were treated in 60 patients. Forty-six per cent were hepatocellular carcinoma, and 36% were colorectal liver metastases. The tumours were located in all segments of the liver. Data were complete from 51 treatments. Two hundred and six electrodes and 336 electrode pairs were analysed. The median lateral and angular error, comparing planned and validated electrode placement, was 3.6 mm (range 0.2-13.6 mm) and 3.1° (range 0°-16.1°). All electrodes with a lateral error >10 mm were either re-positioned or excluded before treatment. The median angle between the electrode pairs was 3.8° (range 0.3°-17.2°). There were no electrode placement-related complications. CONCLUSION: The use of a stereotactic CT-based system for navigation of electrode placement in IRE treatment of liver tumours is safe, accurate and user friendly.


Subject(s)
Electroporation/instrumentation , Electroporation/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Radiography, Interventional/methods , Aged , Electrodes , Female , Humans , Liver/diagnostic imaging , Male , Reproducibility of Results , Retrospective Studies , Stereotaxic Techniques , Tomography, X-Ray Computed/methods
3.
Article in English | MEDLINE | ID: mdl-35402957

ABSTRACT

Goal: Non-anatomical resections of liver tumors can be very challenging as the surgeon cannot use anatomical landmarks on the liver surface or in the ultrasound image for guidance. This makes it difficult to achieve negative resection margins (R0) and still preserve as much healthy liver tissue as possible. Even though image-guided surgery systems have been introduced to overcome this challenge, they are still rarely used due to their inaccuracy, time-effort and complexity in usage and setup. Methods: We have developed a novel approach, which allows us to create an intra-operative resection plan using navigated ultrasound. First, the surface is scanned using a navigated ultrasound, followed by tumor segmentation on a midsection ultrasound image. Based on this information, the navigation system calculates an optimal resection strategy and displays it along with the tracked surgical instruments. In this study, this approach was evaluated by three experienced hepatobiliary surgeons on ex-vivo porcine models. Results: Using this technique, an R0 resection could be achieved in 22 out of 23 (95.7% R0 resection rate) cases with a median resection margin of 5.9 mm (IQR 3.5-7.7 mm). The resection margin between operators 1, 2 and 3 was 7.8 mm, 4.15 mm and 5.1 mm respectively (p = 0.054). Conclusions: This approach could represent a useful tool for intra-operative guidance in non-anatomical resection alongside conventional ultrasound guidance. However, instructions and training are essential especially if the operator has not used an image-guidance system before.

SELECTION OF CITATIONS
SEARCH DETAIL
...