Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 23(1): 750, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580662

ABSTRACT

BACKGROUND: 3D culture is increasingly used in cancer research, as it allows the growth of cells in an environment that mimics in vivo conditions. Metastases are the primary cause of morbidity and mortality in cancer patients, and solid tumour metastases are mostly located in lymph nodes. Currently, there are no techniques that model the pre-metastatic lymph node microenvironment in vitro. In this study, we prepared a novel extracellular matrix, Lymphogel, which is derived from lymph nodes, mimicking the tumour microenvironment (TME) of metastatic carcinoma cells. We tested the suitability of the new matrix in various functional experiments and compared the results with those obtained using existing matrices. METHODS: We used both commercial and patient-derived primary and metastatic oral tongue squamous cell carcinoma (OTSCC) cell lines. We characterized the functional differences of these cells using three different matrices (human uterine leiomyoma-derived Myogel, human pre-metastatic neck lymph node-derived Lymphogel (h-LG), porcine normal neck lymph node-derived Lymphogel (p-LG) in proliferation, adhesion, migration and invasion assays. We also performed proteomic analyses to compare the different matrices in relation to their functional properties. RESULTS: OTSCC cells exhibited different adhesion and invasion patterns depending on the matrix. Metastatic cell lines showed improved ability to adhere to h-LG, but the effects of the matrices on cell invasion fluctuated non-significantly between the cell lines. Proteomic analyses showed that the protein composition between matrices was highly variable; Myogel contained 618, p-LG 1823 and h-LG 1520 different proteins. The comparison of all three matrices revealed only 120 common proteins. Analysis of cellular pathways and processes associated with proteomes of each matrix revealed similarities of Myogel with h-LG but less with p-LG. Similarly, p-LG contained the least adhesion-related proteins compared with Myogel and h-LG. The highest number of unique adhesion-related proteins was present in h-LG. CONCLUSIONS: We demonstrated that human pre-metastatic neck lymph node-derived matrix is suitable for studying metastatic OTSCC cells. As a whole-protein extract, h-LG provides new opportunities for in vitro carcinoma cell culture experiments.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Tongue Neoplasms , Humans , Animals , Swine , Carcinoma, Squamous Cell/pathology , Proteomics , Tongue Neoplasms/pathology , Mouth Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck , Lymph Nodes/pathology , Tumor Microenvironment/physiology
2.
Matrix Biol Plus ; 19-20: 100136, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38223308

ABSTRACT

High-grade serous (HGS) ovarian cancer is the most lethal gynaecological disease in the world and metastases is a major cause. The omentum is the preferential metastatic site in HGS ovarian cancer patients and in vitro models that recapitulate the original environment of this organ at cellular and molecular level are being developed to study basic mechanisms that underpin this disease. The tumour extracellular matrix (ECM) plays active roles in HGS ovarian cancer pathology and response to therapy. However, most of the current in vitro models use matrices of animal origin and that do not recapitulate the complexity of the tumour ECM in patients. Here, we have developed omentum gel (OmGel), a matrix made from tumour-associated omental tissue of HGS ovarian cancer patients that has unprecedented similarity to the ECM of HGS omental tumours and is simple to prepare. When used in 2D and 3D in vitro assays to assess cancer cell functions relevant to metastatic ovarian cancer, OmGel performs as well as or better than the widely use Matrigel and does not induce additional phenotypic changes to ovarian cancer cells. Surprisingly, OmGel promotes pronounced morphological changes in cancer associated fibroblasts (CAFs). These changes were associated with the upregulation of proteins that define subsets of CAFs in tumour patient samples, highlighting the importance of using clinically and physiologically relevant matrices for in vitro studies. Hence, OmGel provides a step forward to study the biology of HGS omental metastasis. Metastasis in the omentum are also typical of other cancer types, particularly gastric cancer, implying the relevance of OmGel to study the biology of other highly lethal cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...