Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Oncol Biol Phys ; 118(2): 325-329, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37689369

ABSTRACT

PURPOSE: The American Association of Physicists in Medicine Radiation Oncology Medical Physics Education Subcommittee (ROMPES) has updated the radiation oncology physics core curriculum for medical residents in the radiation oncology specialty. METHODS AND MATERIALS: Thirteen physicists from the United States and Canada involved in radiation oncology resident education were recruited to ROMPES. The group included doctorates and master's of physicists with a range of clinical or academic roles. Radiation oncology physician and resident representatives were also consulted in the development of this curriculum. In addition to modernizing the material to include new technology, the updated curriculum is consistent with the format of the American Board of Radiology Physics Study Guide Working Group to promote concordance between current resident educational guidelines and examination preparation guidelines. RESULTS: The revised core curriculum recommends 56 hours of didactic education like the 2015 curriculum but was restructured to provide resident education that facilitates best clinical practice and scientific advancement in radiation oncology. The reference list, glossary, and practical modules were reviewed and updated to include recent literature and clinical practice examples. CONCLUSIONS: ROMPES has updated the core physics curriculum for radiation oncology residents. In addition to providing a comprehensive curriculum to promote best practice for radiation oncology practitioners, the updated curriculum aligns with recommendations from the American Board of Radiology Physics Study Guide Working Group. New technology has been integrated into the curriculum. The updated curriculum provides a framework to appropriately cover the educational topics for radiation oncology residents in preparation for their subsequent career development.


Subject(s)
Education, Medical , Internship and Residency , Radiation Oncology , Humans , United States , Radiation Oncology/education , Health Physics/education , Curriculum
2.
Front Oncol ; 13: 1259416, 2023.
Article in English | MEDLINE | ID: mdl-37841437

ABSTRACT

Purpose: The objective of this research is to compare the efficacy of conventional and hypofractionated radiotherapy treatment plans for breast cancer patients, with a specific focus on the unique features of the Halcyon system. Methods and materials: The study collected and analyzed dose volume histogram (DVH) data for two groups of treatment plans implemented using the Halcyon system. The first group consisted of 19 patients who received conventional fractionated (CF) treatment with a total dose of 50 Gy in 25 fractions, while the second group comprised 9 patients who received hypofractionated (HF) treatment with a total dose of 42.56 Gy in 16 fractions. The DVH data was used to calculate various parameters, including tumor control probability (TCP), normal tissue complication probability (NTCP), and equivalent uniform dose (EUD), using radiobiological models. Results: The results indicated that the CF plan resulted in higher TCP but lower NTCP for the lungs compared to the HF plan. The EUD for the HF plan was approximately 49 Gy (114% of its total dose) while that for the CF plan was around 53 Gy (107% of its total dose). Conclusions: The analysis suggests that while the CF plan is better at controlling tumors, it is not as effective as the HF plan in minimizing side effects. Additionally, it is suggested that there may be an optimal configuration for the HF plan that can provide the same or higher EUD than the CF plan.

3.
Bioengineering (Basel) ; 5(3)2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29996496

ABSTRACT

Gel dosimeters are attractive detectors for radiation therapy, with properties similar to biological tissue and the potential to visualize volumetric dose distributions. Radio-fluorogenesis is the yield of fluorescent chemical products in response to energy deposition from ionizing radiation. This report shares the development of a novel radio-fluorogenic gel (RFG) dosimeter, gelatin infused with coumarin-3-carboxlyic acid (C3CA), for the quantification of imparted energy. Aqueous solutions exposed to ionizing radiation result in the production of hydroxyl free radicals through water radiolysis. Interactions between hydroxyl free radicals and coumarin-3-carboxylic acid produce a fluorescent product. 7-hydroxy-coumarin-3-carboxylic acid has a blue (445 nm) emission following ultra-violet (UV) to near UV (365⁻405 nm) excitation. Effects of C3CA concentration and pH buffers were investigated. The response of the RFG was explored with respect to strength, type, and exposure rate of high-energy radiation. Results show a linear dose response relationship independent of energy and type, with a dose-rate dependency. This report demonstrates increased photo-yield with high pH and the utility of gelatin-RFG for phantom studies of radiation dosimetry.

4.
Med Dosim ; 43(2): 150-158, 2018.
Article in English | MEDLINE | ID: mdl-29609845

ABSTRACT

Brachytherapy was among the first methods of radiotherapy and has steadily continued to evolve. Here we present a brief review of the progression of dose calculation methods in brachytherapy to the current state-of-the art computerized methods for heterogeneity correction. We further review the origin and development of the BrachyVision (Varian Medical Systems, Inc., Palo Alto, CA) treatment planning system and evaluate dosimetric results from 12 patients implanted with the strut-assisted volumetric implant (SAVI) applicator (Cianna Medical, Aliso Viejo, CA) for accelerated partial breast irradiation (APBI). Dosimetric results from plans calculated using homogenous and heterogeneous algorithms have been compared to investigate the impact of heterogeneity corrections. Our study showed large percent difference between mean cardiac doses 11.8 ± 6.2% (p = 0.0007) calculated with and without heterogeneity corrections. Our findings are consistent with those of others, indicating an overestimation of the distal dose to organs-at-risk by traditional methods, especially at interfaces between air and tissue.


Subject(s)
Brachytherapy/trends , Radiotherapy Planning, Computer-Assisted/methods , Heart , Humans , Organ Sparing Treatments , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...