Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(15): 17432-17445, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645352

ABSTRACT

The high usage ratio and elevated density of glass fibers (GFs), often surpassing twice that of polymers, can contribute to undesired increases in the overall density of polymeric materials. One potential solution is the incorporation of graphene as a secondary additive, offering a lower specific gravity and exceptional mechanical properties. In light of this, waste tire-derived graphene nanoplates (GNPs) were optimized for coating onto GFs by considering factors such as surface treatment of the fiber, the dispersion quality of GNP, and the coating technique. The resulting GNP-coated GF (GNP-c-GF) was initially incorporated into pure polypropylene (PP) at low weight percentages (0.1-1 wt %), and 31% increase in the tensile modulus was achieved compared to neat PP. Subsequently, 1 wt % GNP-c-GF was utilized as a compatibilizer in PP/GF/GNP composites to enhance the compatibility between GNP and GF. By strategically incorporating GNP and GNP-c-GF at a lower GF ratio, the detrimental impact on the tensile modulus of 30% GF-filled PP was effectively mitigated, leading to a remarkable enhancement to an impressive value of 5658 MPa. The successful integration of GNP and GNP-c-GF exemplifies their promising potential as additives for achieving superior mechanical properties in composite materials, while concurrently promoting the utilization of recycled content.

2.
Polymers (Basel) ; 15(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904326

ABSTRACT

Material design in shape memory polymers (SMPs) carries significant importance in attaining high performance and adjusting the interface between additive and host polymer matrix to increase the degree of recovery. Herein, the main challenge is to enhance the interfacial interactions to provide reversibility during deformation. The present work describes a newly designed composite structure by manufacturing a high-degree biobased and thermally induced shape memory polylactic acid (PLA)/thermoplastic polyurethane (TPU) blend incorporated with graphene nanoplatelets obtained from waste tires. In this design, blending with TPU enhances flexibility, and adding GNP provides functionality in terms of mechanical and thermal properties by enhancing circularity and sustainability approaches. The present work provides a scalable compounding approach for industrial applications of GNP at high shear rates during the melt mixing of single/blend polymer matrices. By evaluating the mechanical performance of the PLA and TPU blend composite composition at a 9:1 weight percentage, the optimum GNP amount was defined as 0.5 wt%. The flexural strength of the developed composite structure was enhanced by 24% and the thermal conductivity by 15%. In addition, a 99.8% shape fixity ratio and a 99.58% recovery ratio were attained within 4 min, resulting in the spectacular enhancement of GNP attainment. This study provides an opportunity to understand the acting mechanism of upcycled GNP in improving composite formulations and to develop a new perspective on the sustainability of PLA/TPU blend composites with an increased biobased degree and shape memory behavior.

3.
Adv Healthc Mater ; 11(11): e2102068, 2022 06.
Article in English | MEDLINE | ID: mdl-35120280

ABSTRACT

Emerging biomanufacturing technologies have revolutionized the field of tissue engineering by offering unprecedented possibilities. Over the past few years, new opportunities arose by combining traditional and novel fabrication techniques, shaping the hybrid designs in biofabrication. One of the potential application fields is skin tissue engineering, in which a combination of traditional principles of wound dressing with advanced biofabrication methods could yield more efficient therapies. In this study, a hybrid design of fiber-reinforced scaffolds combined with gel casting is developed and the efficiency for in vivo wound healing applications is assessed. For this purpose, 3D fiber meshes produced by melt electrowriting are selectively filled with photocrosslinkable gelatin hydrogel matrices loaded with different growth factor carrier microspheres. Additionally, the influence of the inclusion of inorganic bioactive glass particles within the composite fibrous mesh is evaluated. Qualitative evaluation of secondary wound healing criteria and histological analysis shows that hybrid scaffolds containing growth factors and bioactive glass enhances the healing process significantly, compared to the designs merely providing a fiber-reinforced bioactive hydrogel matrix as the wound dressing. This study aims to explore a new application area for melt electrowriting as a powerful tool in fabricating hybrid therapeutic designs for skin tissue engineering.


Subject(s)
Hydrogels , Wound Healing , Bandages , Gelatin , Tissue Engineering/methods , Tissue Scaffolds
4.
Polymers (Basel) ; 13(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808749

ABSTRACT

Homogeneous dispersion of graphene into thermoplastic polymer matrices during melt-mixing is still challenging due to its agglomeration and weak interfacial interactions with the selected polymer matrix. In this study, an ideal dispersion of graphene within the PA66 matrix was achieved under high shear rates by thermokinetic mixing. The flow direction of graphene was monitored by the developed numerical methodology with a combination of its rheological behaviors. Graphene nanoplatelets (GNP) produced from waste-tire by upcycling and recycling techniques having high oxygen surface functional groups were used to increase the compatibility with PA66 chains. This study revealed that GNP addition increased the crystallization temperature of nanocomposites since it acted as both a nucleating and reinforcing agent. Tensile strength and modulus of PA66 nanocomposites were improved at 30% and 42%, respectively, by the addition of 0.3 wt% GNP. Flexural strength and modulus were reached at 20% and 43%, respectively. In addition, the flow model, which simulates the injection molding process of PA66 resin with different GNP loadings considering the rheological behavior and alignment characteristics of GNP, served as a tool to describe the mechanical performance of these developed GNP based nanocomposites.

5.
Biomed Mater ; 15(3): 035015, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32032966

ABSTRACT

Scaffold-based tissue engineering approaches have been commonly used for skin regeneration or wound healings caused by diseases or trauma. For an ideal complete healing process, scaffold structures need to meet the criteria of biocompatibility, biodegradability, and antimicrobial properties, as well as to provide geometrical necessities for the regeneration of damaged tissue. In this study, design, synthesis and characterization of a three dimensional (3D) printable copolymer based on polycaprolactone-block-poly(1,3-propylene succinate) (PCL-PPSu) including anti-microbial silver particles is presented. 3D printing of PCL-PPSu copolymers provided a lower processing temperature compared to neat PCL, hence, inclusion of temperature-sensitive bioactive reagents into the developed copolymer could be realized. In addition, 3D printed block copolymer showed an enhanced hydrolytic and enzymatic degradation behavior. Cell viability and cytotoxicity of the developed copolymer were evaluated by using human dermal fibroblast (HDF) cells. The addition of silver nitrate within the polymer matrix resulted in a significant decrease in the adhesion of different types of microorganisms on the scaffold without inducing any cytotoxicity on HDF cells in vitro. The results suggested that 3D printed PCL-PPSu scaffolds containing anti-microbial silver particles could be considered as a promising biomaterial for emerging skin regenerative therapies, in the light of its adaptability to 3D printing technology, low-processing temperature, enhanced degradation behavior and antimicrobial properties.


Subject(s)
Biocompatible Materials/chemistry , Polyesters/chemistry , Printing, Three-Dimensional , Silver Nitrate/chemistry , Skin/pathology , Tissue Engineering/methods , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Fibroblasts/metabolism , Humans , Hydrolysis , Magnetic Resonance Spectroscopy , Polymers/chemistry , Porosity , Spectroscopy, Fourier Transform Infrared , Tissue Scaffolds
6.
ACS Omega ; 3(6): 6400-6410, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-31458823

ABSTRACT

Platinum (Pt)-decorated graphene-based carbon composite electrodes with controlled dimensionality were successfully fabricated via core-shell electrospinning/electrospraying techniques. In this process, multilayer graphene sheets were converted into the three different forms, fiber, sphere, and foam, by tailoring the polymer concentration, molecular weight of polymer, and applied voltage. As polymer concentration increased, continuous fibers were produced, whereas decreasing polymer concentration caused the formation of graphene-based foam. In addition, the reduction in polymer molecular weight in electrospun solution led to the creation of three-dimensional (3D) spherical structures. In this work, graphene-based foam was produced for the first time by utilizing core-shell electrospraying technology instead of available chemical vapor deposition techniques. The effect of morphologies and dimensions of carbonized graphene-based carbon electrodes on its electrochemical behavior was investigated by cyclic voltammetry and galvanostatic charge-discharge methods. Among the three different electrodes, Pt-supported 3D graphene-based spheres showed the highest specific capacitance of 118 F/g at a scan rate of 1 mV/s owing to the homogeneous decoration of Pt particles with a small diameter of 4 nm on the surface. After 1000 cycles of charging-discharging, Pt-decorated graphene-based structures showed high cyclic stability and retention of capacitance, indicating their potential as high-performance electrodes for energy storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...