Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Carbon Balance Manag ; 19(1): 2, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277090

ABSTRACT

BACKGROUND: As interest in the voluntary soil carbon market surges, carbon registries have been developing new soil carbon measurement, reporting, and verification (MRV) protocols. These protocols are inconsistent in their approaches to measuring soil organic carbon (SOC). Two areas of concern include the type of SOC stock accounting method (fixed-depth (FD) vs. equivalent soil mass (ESM)) and sampling depth requirement. Despite evidence that fixed-depth measurements can result in error because of changes in soil bulk density and that sampling to 30 cm neglects a significant portion of the soil profile's SOC stock, most MRV protocols do not specify which sampling method to use and only require sampling to 30 cm. Using data from UC Davis's Century Experiment ("Century") and UW Madison's Wisconsin Integrated Cropping Systems Trial (WICST), we quantify differences in SOC stock changes estimated by FD and ESM over 20 years, investigate how sampling at-depth (> 30 cm) affects SOC stock change estimates, and estimate how crediting outcomes taking an empirical sampling-only crediting approach differ when stocks are calculated using ESM or FD at different depths. RESULTS: We find that FD and ESM estimates of stock change can differ by over 100 percent and that, as expected, much of this difference is associated with changes in bulk density in surface soils (e.g., r = 0.90 for Century maize treatments). This led to substantial differences in crediting outcomes between ESM and FD-based stocks, although many treatments did not receive credits due to declines in SOC stocks over time. While increased variability of soils at depth makes it challenging to accurately quantify stocks across the profile, sampling to 60 cm can capture changes in bulk density, potential SOC redistribution, and a larger proportion of the overall SOC stock. CONCLUSIONS: ESM accounting and sampling to 60 cm (using multiple depth increments) should be considered best practice when quantifying change in SOC stocks in annual, row crop agroecosystems. For carbon markets, the cost of achieving an accurate estimate of SOC stocks that reflect management impacts on soils at-depth should be reflected in the price of carbon credits.

4.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35145033

ABSTRACT

Intensive crop production on grassland-derived Mollisols has liberated massive amounts of carbon (C) to the atmosphere. Whether minimizing soil disturbance, diversifying crop rotations, or re-establishing perennial grasslands and integrating livestock can slow or reverse this trend remains highly uncertain. We investigated how these management practices affected soil organic carbon (SOC) accrual and distribution between particulate (POM) and mineral-associated (MAOM) organic matter in a 29-y-old field experiment in the North Central United States and assessed how soil microbial traits were related to these changes. Compared to conventional continuous maize monocropping with annual tillage, systems with reduced tillage, diversified crop rotations with cover crops and legumes, or manure addition did not increase total SOC storage or MAOM-C, whereas perennial pastures managed with rotational grazing accumulated more SOC and MAOM-C (18 to 29% higher) than all annual cropping systems after 29 y of management. These results align with a meta-analysis of data from published studies comparing the efficacy of soil health management practices in annual cropping systems on Mollisols worldwide. Incorporating legumes and manure into annual cropping systems enhanced POM-C, microbial biomass, and microbial C-use efficiency but did not significantly increase microbial necromass accumulation, MAOM-C, or total SOC storage. Diverse, rotationally grazed pasture management has the potential to increase persistent soil C on Mollisols, highlighting the key role of well-managed grasslands in climate-smart agriculture.


Subject(s)
Agriculture/methods , Animal Feed , Carbon/chemistry , Crops, Agricultural/physiology , Grassland , Soil/chemistry , Animals , Cattle , Dairying
6.
Biotechnol Biofuels ; 9: 237, 2016.
Article in English | MEDLINE | ID: mdl-27826356

ABSTRACT

BACKGROUND: Interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strains of Saccharomyces cerevisiae and Zymomonas mobilis. A chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates. RESULTS: While most corn stover and switchgrass hydrolysates were readily fermented, growth of S. cerevisiae was completely inhibited in hydrolysate generated from drought-stressed switchgrass. Based on chemical genomics analysis, yeast strains deficient in genes related to protein trafficking within the cell were significantly more resistant to the drought-year switchgrass hydrolysate. Detailed biomass and hydrolysate characterization revealed that switchgrass accumulated greater concentrations of soluble sugars in response to the drought and these sugars were subsequently degraded to pyrazines and imidazoles during ammonia-based pretreatment. When added ex situ to normal switchgrass hydrolysate, imidazoles and pyrazines caused anaerobic growth inhibition of S. cerevisiae. CONCLUSIONS: In response to the osmotic pressures experienced during drought stress, plants accumulate soluble sugars that are susceptible to degradation during chemical pretreatments. For ammonia-based pretreatment, these sugars degrade to imidazoles and pyrazines. These compounds contribute to S. cerevisiae growth inhibition in drought-year switchgrass hydrolysate. This work discovered that variation in environmental conditions during the growth of bioenergy crops could have significant detrimental effects on fermentation organisms during biofuel production. These findings are relevant to regions where climate change is predicted to cause an increased incidence of drought and to marginal lands with poor water-holding capacity, where fluctuations in soil moisture may trigger frequent drought stress response in lignocellulosic feedstocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...