Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 333: 121947, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494214

ABSTRACT

The rapid development of hydrogels has garnered significant attention in health monitoring and human motion sensing. However, the synthesis of multifunctional conductive hydrogels with excellent strain/pressure sensing and photoresponsiveness remains a challenge. Herein, the conductive hydrogels (BPTP) with excellent mechanical properties, fatigue resistance and photoresponsive behavior composed of polyacrylamide (PAM) matrix, 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) reinforcement and polydopamine-modified black phosphorus (BP@PDA) photosensitizer are prepared through a facile free-radical polymerization approach. The PDA adhered to the BP surface by π-π stacking promotes the optical properties of BP while also preventing BP oxidation from water. Through hydrogen bonding interactions, TOCNs improve the homogeneous dispersion of BP@PDA nanosheets and the mechanical toughness of BPTP. Benefiting from the synergistic effect of PDA and TOCNs, the conductive BPTP integrates superior mechanical performances, excellent photoelectric response and photothermal conversion capability. The BPTP-based sensor with high cycling stability demonstrates superior strain sensitivity (GF = 6.0) and pressure sensing capability (S = 0.13 kPa-1) to monitor various human activities. Therefore, this work delivers an alternative construction strategy for generating high-performance conductive hydrogels as multifunctional wearable sensors.


Subject(s)
Cellulose, Oxidized , Wearable Electronic Devices , Humans , Electric Conductivity , Hydrogels , Hydrogen Bonding
2.
J Colloid Interface Sci ; 660: 923-933, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38280285

ABSTRACT

The flexible and self-healing supercapacitors (SCs) are considered to be promising smart energy storage devices. Nevertheless, the SCs integrated with flexibility, lightweight, pattern editability, self-healing capabilities and desirable electrochemical properties remain a challenge. Herein, an all-in-one self-healing SC fabricated with the free-standing hybrid film (TCMP) composed of the 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) carried carbon nanotubes (CNTs), manganese dioxide (MnO2) and polyaniline (PANI) as the electrode, polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel as the electrolyte and dynamically cross-linked cellulose nanofibers/PVA/sodium tetraborate decahydrate (CNF/PB) hydrogel as the self-healing electrode matrix is developed. The TCMP film electrodes are fabricated through a facile in-situ polymerization of MnO2 and PANI in TOCNs-dispersed CNTs composite networks, exhibiting lightweight, high electrical conductivity, flexibility, pattern editability and excellent electrochemical properties. Benefited from the hierarchically porous structure and high mechanical properties of TOCNs, excellent electrical conductivity of CNTs and the desirable synergistic effect of pseudocapacitance induced by MnO2 and PANI, the assembled SC with an interdigital structure demonstrated a high areal capacitance of 1108 mF cm-2 at 2 mA cm-2, large areal energy density of 153.7 µWh cm-2 at 1101.7 µW cm-2. A satisfactory bending cycle performance (capacitance retention up to 95 % after 200 bending deformations) and self-healing characteristics (∼90 % capacitance retention after 10 cut/repair cycles) are demonstrated for the TCMP-based symmetric SC, delivering a feasible strategy for electrochemical energy storage devices with excellent performance, designable patterns and desirable safe lifespan.

3.
ACS Appl Mater Interfaces ; 14(30): 35040-35052, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35861436

ABSTRACT

Nanocellulose-mediated MXene composites have attracted widespread attention in the fields of sustainable energy, wearable sensors, and electromagnetic interference (EMI) shielding. However, the effects of different nanocelluloses on the multifunctional properties of nanocellulose/Ti3C2Tx composites still need further exploration. Herein, we use three types of nanocelluloses, including bacterial cellulose (BC), cellulose nanocrystals (CNCs), and 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO)-oxidized cellulose nanofibers (TOCNs), as intercalation to link Ti3C2Tx nanosheets via a self-assembly process, improving the dispersibility, film-forming ability, mechanical properties, and multifunctional performances of nanocelluloses/Ti3C2Tx hybrids through electrostatic forces and hydrogen bonding. The optimized ultrathin (∼40 µm) TOCN/Ti3C2Tx film integrates excellent tensile strength (∼98.89 MPa), long-term stability (during deformation and water erosion), favorable photoelectric response (photosensitivity up to 2620%), and temperature response (reaching 163 °C in only 12 s). Laser-cutting patterned TOCN/Ti3C2Tx films are assembled into flexible multifunctional electronics, exhibiting splendid photoresponse performances and tunable electromagnetic energy shielding capability (>96.4%) related to the variation of water content at the film-gel electrolyte interface. Multifunctional patterned devices based on TOCN/Ti3C2Tx composite films provide a novel pathway to rationally design wearable EMI devices with photoelectric response and photothermal conversion.

4.
Micromachines (Basel) ; 12(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668560

ABSTRACT

Escherichia coli has been known to cause a variety of infectious diseases. The conventional enzyme-linked immunosorbent assay (ELISA) is a well-known method widely used to diagnose a variety of infectious diseases. This method is expensive and requires considerable time and effort to conduct and complete multiple integral steps. We previously proposed the use of paper-based ELISA to rapidly detect the presence of E. coli. This approach has demonstrated utility for point-of-care (POC) urinary tract infection diagnoses. Paper-based ELISA, while advantageous, still requires the execution of several procedural steps. Here, we discuss the design and experimental implementation of a turntable paper-based device to simplify the paper-based ELISA protocols for the detection of E. coli. In this process, antibodies or reagents are preloaded onto zones of a paper-based device and allowed to dry before use. We successfully used this device to detect E. coli with a detection limit of 105 colony-forming units (colony-forming unit [CFU])/mL.

SELECTION OF CITATIONS
SEARCH DETAIL
...