Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(12): 3528-3531, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875662

ABSTRACT

The application of a liquid crystal (LC) in displays has driven the development of novel LC elements. In this Letter, polarization variable line-space (PVLS) gratings based on photoalignment are fabricated, and their variable-spacing properties are derived using the vector diffraction theory. Both transmissive and reflective PVLS gratings are fabricated to validate the correctness of the derivation. Experimental results indicate that PVLS gratings have a wider wavelength response bandwidth than that of polarization volume grating (PVG). PVLS gratings have angle selectivity, and a large incident angle causes wavelength blueshift. Additionally, the relationship between wavelength and focal length indicates its anomalous dispersion as a diffractive optical element. These results of photoalignment-based PVLS gratings provide valuable insights for the advancement of displays and have the potential to improve visual experiences.

2.
ACS Appl Mater Interfaces ; 15(8): 11016-11023, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36700704

ABSTRACT

The dispersion and tunable alignment of colloidal nanomaterials is desirable for practical applications in electric-optic (E-O) devices; however, it remains challenging for large one-dimensional nanomaterials with a large aspect ratio. Here, we demonstrate a large-scale, simple, multi-microdomain, and noncontact photoalignment technology to align colloidal silver nanowires (AgNWs, length ∼4.5 µm, diameter ∼70.6 nm) in a liquid crystal (LC) with a high two-dimensional order parameter (about 0.9). The AgNWs are precisely self-assembled via photomasks with twisted nematic and planar alignment models in microdomain regions. The AgNW orientation is tuned with an electric field, through the rotation of an LC director n, which allows three-dimensional (3D) tunable orientation combined with photoalignment. The colloidal dispersions of AgNWs in the LC cell influenced the ion transfer, elastic constant, dielectric anisotropy, and near LC alignment, changing the E-O properties of the LC devices. The 3D tunable orientation of an AgNW by photoalignment and an electric field could provide a new way to assemble large colloidal nanomaterials and fabricate functional E-O devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...