Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neoplasma ; 70(3): 402-415, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37498068

ABSTRACT

The regulation of protein kinase B (AKT) phosphorylation by Tripartite motif-containing protein 31 (TRIM31) is implicated as an essential mechanism in the progression of many malignant tumors. Nevertheless, the function of the TRIM31/AKT pathway in oral squamous cell carcinoma (OSCC) remains elusive. Here, immunohistochemistry analysis of human OSCC tissue microarrays indicated significantly higher levels of TRIM31 and phosphorylated AKT (p-AKT) in OSCC tumors than in adjacent tissue samples. Also, we detected a positive association between TRIM31 expression and clinical OSCC development. In in vitro studies, TRIM31 knockdown severely impaired OSCC cell growth, invasion, and migration. By contrast, TRIM31 overexpression improved these cell behaviors, while subsequent AKT inhibition abrogated the effect. In vivo tumorigenesis experiments using nude mice also validated the effects of TRIM31/AKT signaling in tumor growth. Furthermore, TRIM31 upregulation facilitated glucose uptake, as well as lactate and adenosine triphosphate production of OSCC cells, while such positive effects on glycolysis and malignant cell phenotypes were reversed by treatment with AKT or glycolysis inhibitors. In conclusion, TRIM31 may improve OSCC progression by enhancing AKT phosphorylation and subsequent glycolysis. Hence, TRIM31 has the potential as a treatment target in OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Animals , Humans , Mice , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Glycolysis , Mice, Nude , Mouth Neoplasms/genetics , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Squamous Cell Carcinoma of Head and Neck , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics
2.
PLoS One ; 12(4): e0174506, 2017.
Article in English | MEDLINE | ID: mdl-28406911

ABSTRACT

Two Gram-stain negative aerobic bacterial strains were isolated from the bark tissue of Populus × euramericana. The novel isolates were investigated using a polyphasic approach including 16S rRNA gene sequencing, genome sequencing, average nucleotide identity (ANI) and both phenotypic and chemotaxonomic assays. The genome core gene sequence and 16S rRNA gene phylogenies suggest that the novel isolates are different from the genera Snodgrassella and Stenoxybacter. Additionally, the ANI, G+C content, main fatty acids and phospholipid profile data supported the distinctiveness of the novel strain from genus Snodgrassella. Therefore, based on the data presented, the strains constitute a novel species of a novel genus within the family Neisseriaceae, for which the name Populibacter corticis gen. nov., sp. nov. is proposed. The type strain is 15-3-5T (= CFCC 13594T = KCTC 42251T).


Subject(s)
Genome, Bacterial/physiology , Neisseriaceae/genetics , Phylogeny , Plant Bark/microbiology , Populus/microbiology , Neisseriaceae/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...