Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(20): 9288-9296, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38724469

ABSTRACT

A novel 3D europium-based cationic framework (Eu-CMOF) has been constructed solvothermally by employing a viologen derivative as an organic functional building unit. Notably, Eu-CMOF demonstrates its capability as a proficient aqueous-phase ion-exchange host, facilitating the remarkable rapid chromatographic column separation of new coccine and malachite green (NC3-/MG+), as well as new coccine and methylene blue (NC3-/MLB+), in mere 2 to 4 min. Adsorption thermodynamics and kinetics of anionic dyes demonstrate that Eu-CMOF exhibits a higher adsorption capacity for NC3-, as evaluated by the Langmuir model, reaching a value of 173 mg·g-1. The pseudo-second-order rate constant is determined to be 3.84 × 10-3 mg-1·g·min-1. Additionally, Eu-CMOF displays reversible photochromic and amine- and ammonia-induced vapochromic behaviors. Further mechanistic studies reveal that these chromic behaviors are primarily attributed to the generation of free viologen radical stimulated by Xe-light or electron-rich amine/ammonia. This research contributes to the development of advanced materials with applications in rapid chromatographic separation and stimuli-responsive chromic properties, showcasing the potential of Eu-CMOF as a versatile platform for practical applications.

2.
Phytomedicine ; 129: 155563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552377

ABSTRACT

BACKGROUND: Mitotic clonal expansion (MCE) is a prerequisite for preadipocyte differentiation and adipogenesis. Epigallocatechin gallate (EGCG) has been shown to inhibit preadipocyte differentiation. However, the exact molecular mechanisms are still elusive. PURPOSE: This study investigated whether EGCG could inhibit adipogenesis and lipid accumulation by regulating the cell cycle in the MCE phase of adipogenesis and its underlying molecular mechanisms. METHOD: 3T3-L1 preadipocytes were induced to differentiate by a differentiation cocktail (DMI) and were treated with EGCG (25-100 µM) for 9, 18, and 24 h to examine the effect on MCE, or eight days to examine the effect on terminal differentiation. C57BL/6 mice were fed a high-fat diet (HFD) for three months to induce obesity and were given EGCG (50 or 100 mg/kg) daily by gavage. RESULTS: We showed that EGCG significantly inhibited terminal adipogenesis and lipid accumulation in 3T3-L1 cells and decreased expressions of PPARγ, C/EBPα, and FASN. Notably, at the MCE phase, EGCG regulated the cell cycle in sequential order, induced G0/G1 arrest at 18 h, and inhibited the G2/M phase at 24 h upon DMI treatment. Meanwhile, EGCG regulated the expressions of cell cycle regulators (cyclin D1, cyclin E1, CDK4, CDK6, cyclin B1, cyclin B2, p16, and p27), and decreased C/EBPß, PPARγ, and C/EBPα expressions at MCE. Mechanistic studies using STAT3 agonist Colivelin and antagonist C188-9 revealed that EGCG-induced cell cycle arrest in the MCE phase and terminal adipocyte differentiation was mediated by the inhibition of JAK2/STAT3 signaling cascades and STAT3 (Tyr705) nuclear translocation. Furthermore, EGCG significantly protected mice from HFD-induced obesity, reduced body weight and lipid accumulations in adipose tissues, reduced hyperlipidemia and leptin levels, and improved glucose intolerance and insulin sensitivity. Moreover, RNA sequencing (RNA-seq) analysis showed that the cell cycle changes in epididymal white adipose tissue (eWAT) were significantly enriched upon EGCG treatment. We further verified that EGCG treatment significantly reduced expressions of adipogenic factors, cell cycle regulators, and p-STAT3 in eWAT. CONCLUSION: EGCG inhibits MCE, resulting in the inhibition of early and terminal adipocyte differentiation and lipid accumulation, which were mediated by inhibiting p-STAT3 nucleus translocation and activation.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Catechin , Diet, High-Fat , Janus Kinase 2 , Mice, Inbred C57BL , STAT3 Transcription Factor , Animals , Catechin/pharmacology , Catechin/analogs & derivatives , Mice , STAT3 Transcription Factor/metabolism , Adipogenesis/drug effects , Janus Kinase 2/metabolism , Adipocytes/drug effects , Male , Mitosis/drug effects , Cell Differentiation/drug effects , Obesity/drug therapy , PPAR gamma/metabolism , Lipid Metabolism/drug effects , Signal Transduction/drug effects
3.
Phytomedicine ; 110: 154626, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36603342

ABSTRACT

BACKGROUND: Ganoderma lucidum polysaccharide (GLP) has many biological properties, however, the anti-fibrosis effect of GLP is unknown at present. PURPOSE: This study aimed to examine the anti-fibrogenic effect of GLP and its underlying molecular mechanisms in vivo and in vitro. STUDY DESIGN: Both CCl4-induced mouse and TGF-ß1-induced HSC-T6 cellular models of fibrosis were established to examine the anti-fibrogenic effect of a water-soluble GLP (25 kDa) extracted from the sporoderm-removed spores of G. lucidum.. METHOD: Serum markers of liver injury, histology and fibrosis of liver tissues, and collagen formation were examined using an automatic biochemical analyzer, H&E staining, Sirius red staining, immunohistochemistry, immunofluorescence, ELISA, Western blotting, and qRT-PCR. RNA-sequencing, enrichment pathway analysis, Western blotting, qRT-PCR, and flow cytometry were employed to identify the potential molecular targets and signaling pathways that are responsible for the anti-fibrotic effect of GLP. RESULTS: We showed that GLP (150 and 300 mg/kg) significantly inhibited hepatic fibrogenesis and inflammation in CCl4-treated mice as mediated by the TLR4/NF-κB/MyD88 signaling pathway. We further demonstrated that GLP significantly inhibited hepatic stellate cell (HSCs) activation in mice and in TGF-ß1-induced HSC-T6 cells as manifested by reduced collagen I and a-SMA expressions. RNA-sequencing uncovered inflammation, apoptosis, cell cycle, ECM-receptor interaction, TLR4/NF-κB, and TGF-ß/Smad signalings as major pathways suppressed by GLP administration. Further studies demonstrated that GLP elicits anti-fibrotic actions that are associated with a novel dual effect on apoptosis in vivo (inhibit) or in vitro (promote), suppression of cell cycle in vivo, induction of S phase arrest in vitro, and attenuation of ECM-receptor interaction-associated molecule expressions including integrins ITGA6 and ITGA8. Furthermore, GLP significantly inhibited the TGF-ß/Smad signaling in mice, and reduced TGF-ß1 or its agonist SRI-011381-induced Smad2 and Smad3 phosphorylations, but increased Samd7 expression in HSC-T6 cells. CONCLUSION: This study provides the first evidence that GLP could be a promising dietary strategy for treating liver fibrosis, which protects against liver fibrosis and HSC activation through targeting inflammation, apoptosis, cell cycle, and ECM-receptor interactions that are mediated by TGF-ß/Smad signaling.


Subject(s)
Reishi , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Smad Proteins/metabolism , Hepatic Stellate Cells , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Collagen Type I/metabolism , Cell Cycle , Inflammation/metabolism , Apoptosis , RNA/metabolism
4.
Life Sci ; 311(Pt A): 121142, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36367498

ABSTRACT

AIMS: Our previous studies showed that the nonsteroidal anti-inflammatory drug-activated gene-1, or growth differentiation factor-15 (NAG-1/GDF15) inhibits obesity and diabetes in mice. The current study aimed to examine the role and molecular mechanisms of NAG-1/GDF15 in diabetic nephropathy (DN), which is largely unknown. MAIN METHODS: Both male and female wild-type (Wt) C57BL/6 mice and mice overexpressing human NAG-1/GDF15 (transgenic, Tg) were used, which were induced by high-fat diet (HFD)/streptozotocin (STZ) to establish the mouse model of DN. Transcriptome study was performed to identify the underlying molecular mechanisms of NAG-1/GDF15 against DN. In addition, human renal tubular epithelial cells (HK-2) were cultured with high glucose (HG) to establish a DN cellular model and were treated with NAG-1/GDF15 plasmid or the recombinant NAG-1/GDF15 protein for mechanism studies. KEY FINDINGS: Overexpression of NAG-1/GDF15 in Tg mice significantly alleviated HFD/STZ-induced typical symptoms of DN, improved lipid homeostasis, glucose intolerance, and insulin sensitivity. Histopathology of renal tissues revealed that NAG-1/GDF15 mice had significantly reduced renal injury, glycogen deposition, and renal fibrosis. Transcriptome study uncovered inflammation, cell adhesion, and the inflammation-related signaling pathways as major pathways suppressed in the NAG-1/GDF15 mice. Further studies demonstrated that NAG-1/GDF15 overexpression inhibited renal and systematic inflammation, inhibited the AGE/RAGE axis and its associated downstream inflammatory molecules and adhesion molecules, and inhibited the upregulation of TLR4/MyD88/NF-κB signaling pathway in mice. These results were further confirmed in HG-induced HK-2 cells. SIGNIFICANCE: NAG-1/GDF15 plays an important role in the inhibition of the development and progression of DN via targeting AGE/RAGE-mediated inflammation pathways.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Female , Humans , Male , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Growth Differentiation Factor 15/genetics , Inflammation/pathology , Mice, Inbred C57BL , Signal Transduction , Streptozocin/pharmacology , Receptor for Advanced Glycation End Products/metabolism , Glycation End Products, Advanced/metabolism
5.
Front Nutr ; 9: 1006127, 2022.
Article in English | MEDLINE | ID: mdl-36185644

ABSTRACT

Plant-derived polysaccharides have demonstrated promising anti-cancer effects via immune-regulatory activity. The aim of the current study was to compare the chemical property and the anticancer effects of polysaccharides extracted from the sporoderm-removed spores of the medicinal mushroom Ganoderma lucidum (RSGLP), which removed the sporoderm completely, with polysaccharides extracted from the sporoderm-broken spores of G. lucidum (BSGLP). We found that RSGLP has a higher extraction yield than BSGLP. HPGPC and GC-MS results revealed that both RSGLP and BSGLP are heteropolysaccharides, but RSGLP had a higher molecular weight and a different ratio of monosaccharide composition than BSGLP. MTT and flow cytometry results demonstrated that RSGLP exhibited much higher dose-efficacy in inhibiting cell viability and inducing apoptosis than BSGLP in 8 cancer cell lines representing colon (HCT116 and HT29), liver (HepG2 and Huh-7), breast (MDA-MB-231 and MCF-7), and lung cancers (NCI-H460 and A549). Furthermore, RSGLP is more effective in inhibiting HCT116 and NCI-H460 xenograft tumor growth and inhibiting tumor-induced splenomegaly than BSGLP in nude mice, suggesting a better effect on regulating immunity of RSGLP. Next, we found that RSGLP is more potent in inhibiting the level of serum inflammatory cytokines in nude mice, and in inhibiting the activation of macrophage RAW264.7 and the expression of the inflammatory mediators IL-1ß, TNF-α, iNOS, and COX-2 in vitro. This is the first study to compare the chemical properties, anti-cancer, and immune-regulatory effects of RSGLP and BSGLP using multiple cancer cell lines. Our results revealed that the sporoderm-removed spores of G. lucidum (RSGL) and RSGLP may serve as new anticancer agents for their promising immune-regulatory activity.

6.
Redox Biol ; 52: 102322, 2022 06.
Article in English | MEDLINE | ID: mdl-35504134

ABSTRACT

Mitochondrial dysfunction and oxidative stress-mediated inflammasome activation play critical roles in the pathogenesis of the non-alcoholic fatty liver disease (NAFLD). Non-steroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1), or growth differentiation factor-15 (GDF15), is associated with many biological processes and diseases, including NAFLD. However, the role of NAG-1/GDF15 in regulating oxidative stress and whether this process is associated with absent in melanoma 2 (AIM2) inflammasome activation in NAFLD are unknown. In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Overexpression of NAG-1/GDF15 in transgenic (Tg) mice significantly alleviated HFD-induced obesity and hepatic steatosis, improved lipid homeostasis, enhanced fatty acid ß-oxidation and lipolysis, inhibited fatty acid synthesis and uptake, and inhibited AIM2 inflammasome activation and the secretion of IL-18 and IL-1ß, as compared to their wild-type (WT) littermates without reducing food intake. Furthermore, NAG-1/GDF15 overexpression attenuated FFA-induced triglyceride (TG) accumulation, lipid metabolism deregulation, and AIM2 inflammasome activation in hepatic steatotic cells, while knockdown of NAG-1/GDF15 demonstrated opposite effects. Moreover, NAG-1/GDF15 overexpression inhibited HFD- and FFA-induced oxidative stress and mitochondrial damage which in turn reduced double-strand DNA (dsDNA) release into the cytosol, while NAG-1/GDF15 siRNA showed opposite effects. The reduced ROS production and dsDNA release may be responsible for attenuated AIM2 activation by NAG-1/GDF15 upon fatty acid overload. In conclusion, our results provide evidence that other than regulating lipid homeostasis, NAG-1/GDF15 protects against hepatic steatosis through a novel mechanism via suppressing oxidative stress, mitochondrial damage, dsDNA release, and AIM2 inflammasome activation.


Subject(s)
Growth Differentiation Factor 15/metabolism , Melanoma , Non-alcoholic Fatty Liver Disease , Animals , DNA/metabolism , DNA-Binding Proteins/metabolism , Diet, High-Fat , Fatty Acids/metabolism , Fatty Acids, Nonesterified/adverse effects , Growth Differentiation Factor 15/genetics , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Lipid Metabolism , Liver/metabolism , Melanoma/metabolism , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Oxidative Stress
7.
Mol Cell Endocrinol ; 549: 111643, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35398052

ABSTRACT

The loss of functional insulin-producing ß-cells is a hallmark of type 1 diabetes mellitus (T1DM). Previously, we reported that the non-steroidal anti-inflammatory drug activated gene-1, or growth differentiation factor-15 (NAG-1/GDF15) inhibits obesity and improves insulin sensitivity in both genetic and dietary-induced obese mice. However, the regulatory role of NAG-1/GDF15 in the structure and function of ß-cells and the prevention of T1DM is largely unknown. In the current study, we reported that NAG-1/GDF15 transgenic (Tg) mice are resistant to diabetogenesis induced by multiple low-dose streptozotocin (MLD-STZ) treatment. NAG-1/GDF15 overexpression significantly reduced diabetes incidence, alleviated symptoms of T1DM, and improved MLD-STZ-induced glucose intolerance and insulin resistance. Both the mass and function of pancreatic ß cells were preserved in the NAG-1/GDF15 Tg mice as evidenced by significantly increased islet area and insulin production. The mechanistic study revealed that NAG-1/GDF15 significantly inhibited STZ-induced apoptosis and preserved the reduction of proliferation in the islets of the Tg mice as compared to the wild-type (WT) mice upon MLD-STZ treatment. Additionally, NAG-1/GDF15 significantly reduced both the serum and islet levels of the inflammatory cytokines (IL-1ß, IL-6, and TNFα), and reduced the expression of NF-κB expression and immune cells infiltration in the islets. Collectively, these results indicate that NAG-1/GDF15 is effective in improving STZ-induced glucose intolerance, probably was mediated via suppressing inflammation, inhibiting apoptosis, and preserving ß-cell mass and function.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Glucose Intolerance , Insulin Resistance , Insulin-Secreting Cells , Islets of Langerhans , Animals , Apoptosis , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Glucose Intolerance/metabolism , Inflammation/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Mice , Mice, Transgenic , Streptozocin/adverse effects
8.
Carbohydr Polym ; 267: 118231, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119183

ABSTRACT

This study investigated the effects of water-soluble polysaccharide extracted from the sporoderm-removed spores of Ganoderma lucidum (GLP) against AOM/DSS-induced inflammation, tumorigenesis, and gut microbiota modification, which has never been reported before. Our data revealed that GLP (200 and 300 mg/kg) decreased AOM/DSS-induced colitis and tumorigenesis, manifested by significantly reduced disease activity index score, and total number and size of tumors. Furthermore, GLP ameliorated AOM/DSS-induced microbiota dysbiosis, increased short-chain fatty acid production, and alleviated endotoxemia by inhibiting TLR4/MyD88/NF-κB signaling. Besides, GLP profoundly improved gut barrier function as evidenced by increased numbers of goblet cells, MUC2 secretion, and tight junction protein expressions. GLP treatment inhibited macrophage infiltration and downregulated IL-1ß, iNOS, and COX-2 expressions. Additionally, GLP inhibited lipopolysaccharides (LPS)-induced inflammation markers and MAPK (JNK and ERK) activation in macrophage RAW264.7, intestinal HT-29, and NCM460 cells. In conclusion, these results indicate that GLP is a promising prebiotic for the treatment of colorectal cancer.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Anticarcinogenic Agents/therapeutic use , Carcinogenesis/drug effects , Colitis/drug therapy , Fungal Polysaccharides/therapeutic use , Gastrointestinal Microbiome/drug effects , Animals , Azoxymethane , Cell Line, Tumor , Colitis/chemically induced , Colitis/pathology , Colon/drug effects , Colon/pathology , Colonic Neoplasms/pathology , Colonic Neoplasms/prevention & control , Dextran Sulfate , Dysbiosis/drug therapy , Humans , Inflammation/drug therapy , Inflammation/pathology , Macrophage Activation/drug effects , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Reishi/chemistry , Signal Transduction/drug effects
9.
Inorg Chem ; 60(8): 5988-5995, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33825478

ABSTRACT

A novel cationic metal-organic framework composed of {Cu2(COO)4} paddle-wheel units and a tetracarboxylic viologen derivative, namely, {[Cu2(bdcbp)(H2O)2]·2NO3·2H2O}n (Cu-CMOF, H4bdcbpCl2 = 1,1'-bis(3,5-dicarboxyphenyl)-4,4'-bipyridinium dichloride), has been successfully synthesized and structurally characterized. In Cu-CMOF, the {Cu2(COO)4} unit and viologen derivative both act as four-connected nodes forming an ssb-type cationic network with 42.84 topology, in which the positive charges are distributed on the organic viologen moieties. Deeper insight of the structure indicates that the 3D architecture of Cu-CMOF can be seen as packing of a 26-faceted polyhedral cage and two cuboid cages. Notably, Cu-CMOF displays a highly efficient anion exchange ability for capture and removal of anionic pollutants. UV-vis absorption spectra and digital images demonstrate that Cu-CMOF is capable of adsorbing the dichromate anion and anionic dyes effectively, such as methyl orange (MO-), Congo red (CR2-), and New Coccine (NC3-). Meaningfully, anionic dyes (MO-, CR2-, and NC3-) can be efficiently and selectively removed by Cu-CMOF in the presence of cationic dye methylene blue (MLB+). Such behaviors of anionic pollutant adsorption and dye separation are mainly caused by an ion-exchange process facilitated by the large cavity and decentralized distribution of positive charge in Cu-CMOF.

10.
J Ethnopharmacol ; 273: 113964, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33640439

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qizhen capsule (QZC) is a traditional Chinese medicine (TCM) preparation that has been widely used in clinical practice and exerts promising therapeutic effects against breast, lung, and gastric cancers. However, studies have not reported whether QZC inhibits colorectal cancer (CRC) development and progression. Meanwhile, the underlying molecular mechanisms of its anticancer activity have not been studied. AIM OF THE STUDY: To investigate the anticancer effects of QZC on CRC and the possible underlying molecular mechanisms of QZC in vitro and in vivo. MATERIALS AND METHODS: The MTT assay and flow cytometry were used to determine the viability and apoptosis of HCT116 and HT-29 cancer cells. A xenograft nude mouse model was used to study the antitumor effects of QZC in vivo. Western blotting was performed to determine the expression of key proteins responsible for the molecular mechanisms elicited by QZC. Immunofluorescence staining was performed to detect the expression of nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 or growth differentiation factor-15 (NAG-1/GDF15). Small interfering RNAs (siRNAs) were used to silence NAG-1/GDF15 in cells. RESULTS: In this study, QZC significantly reduced the viability of HCT116 and HT-29 cells and induced apoptosis in dose- and time-dependent manners, but displayed much less toxicity toward normal cells. QZC-induced apoptosis in HCT116 cells was accompanied by the deregulation of the expression of the Bcl-2, Bax, PARP, caspase-3, and caspase-9 proteins. Furthermore, QZC induced NAG-1/GDF15 expression in HCT116 cells, while silencing of NAG-1/GDF15 attenuated QZC-induced apoptosis and cell death. Next, QZC increased the phosphorylation of mTOR, AMPK, p38, and MAPK/ERK in HCT116 cells. We then demonstrated that QZC-induced apoptosis and NAG-1/GDF15 upregulation were mediated by MAPK/ERK activation. Moreover, QZC significantly inhibited HCT116 xenograft tumor growth in nude mice, which was accompanied by NAG/GDF15 upregulation and MAPK/ERK activation. QZC also prevented 5-FU-induced weight loss or cachexia in tumor-bearing mice. The expression of Ki67 and PCNA was suppressed, while cleaved caspase-3 level and TUNEL staining were increased in the tumor sections from QZC-treated mice compared to the control. CONCLUSION: QZC is a novel anticancer agent for CRC that targets NAG-1/GDF15 via the MAPK/ERK signaling pathway.


Subject(s)
Colorectal Neoplasms/prevention & control , Drugs, Chinese Herbal/therapeutic use , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/drug effects , Growth Differentiation Factor 15/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Animals , Antineoplastic Agents/therapeutic use , Extracellular Signal-Regulated MAP Kinases/genetics , Growth Differentiation Factor 15/genetics , Humans , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Mice , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/genetics , Neoplasms, Experimental
11.
Carbohydr Polym ; 256: 117594, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33483079

ABSTRACT

Ganoderma lucidum has been shown to have anti-obesity effects. However, polysaccharide extracted from the sporoderm-broken spores of Ganoderma lucidum (BSGLP) against obesity and its underlying mechanisms have never been reported. In the current study, we showed that BSGLP inhibited high-fat diet (HFD)-induced obesity, hyperlipidemia, inflammation, and fat accumulation in C57BL/6 J mice. BSGLP improved HFD-induced gut microbiota dysbiosis, maintained intestinal barrier function, increased short-chain fatty acids production and GPR43 expression, ameliorated endotoxemia, manifested by reduced serum lipopolysaccharide level, and increased ileum expression of tight junction proteins and antimicrobial peptides. Fecal microbiota transplantation study confirmed that BSGLP-induced microbiota change is responsible, at least in part, for obesity inhibition. Besides, BSGLP notably alleviated HFD-induced upregulation of TLR4/Myd88/NF-κB signaling pathway in adipose tissue. Collectively, our study showed for the first time that BSGLP might be used as a prebiotic agent to inhibit obesity and hyperlipidemia through modulating inflammation, gut microbiota, and gut barrier function.


Subject(s)
Ganoderma/drug effects , Gastrointestinal Microbiome , Inflammation/drug therapy , Obesity/drug therapy , Polysaccharides/chemistry , Animals , Body Weight , Computational Biology , Diet, High-Fat , Dysbiosis , Endotoxemia/metabolism , Feces/microbiology , Glucose Tolerance Test , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , Inflammation/metabolism , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Powders , RNA, Ribosomal, 16S/metabolism , Spores, Fungal
12.
Cancer Med ; 9(16): 5827-5838, 2020 08.
Article in English | MEDLINE | ID: mdl-32608579

ABSTRACT

PURPOSE: Anti-CD19 chimeric antigen receptor T (CAR-T) cell therapy has demonstrated remarkable efficacy for refractory and relapsed diffuse large B cell lymphoma (R/R DLBCL). However, this therapy failed in nearly 25% patients mainly due to antigen loss. The authors performed a phase Ⅱ trial by coadministration of anti-CD19 and anti-CD20 CAR-T cells treatment for R/R DLBCL and evaluated its efficacy and toxicity. METHODS: Totally 21 patients with DLBCL were enrolled in this study. The patients were conditioned with fludarabine and cyclophosphamide before the infusion of anti-CD19 and anti-CD20 CAR-T cells. Treatment response, toxicity, and persistence were monitored continuously. RESULTS: Of the 21 patients received the treatment, the objective response rate (ORR) is 81.0% (95% confidence interval [CI], 58.1%-94.6%) with four cases of bulk (4/5) and one case of testis involvement; 52.4% (95% CI, 29.8%-74.3%) had a complete response (CR). Peak levels of anti-CD19 and anti-CD20 CAR cells were associated with response (P = .007 and .002). Grade 3-4 cytokine release syndrome (CRS) and neurologic events occurred in 28.5% and 9.5% patients, respectively. Median overall survival (OS) and progression-free survival (PFS) were 8.1 and 5.0 months, respectively. The maximum standard uptake value (SUVmax) of CD4/CD8 ratio before and after infusion were associated with responses, and the total lesion glycolysis (TLG) before infusion correlates with cytokines level. CONCLUSIONS: Coadministration of anti-CD19 and CD20 CAR-T cells therapy for DLBCL is feasible with manageable toxicity. Cytokine markers are related to toxicity and SUVmax could predict efficacy. This trial was registered at www.clinicaltrials.gov as NCT03207178.


Subject(s)
Antigens, CD19 , Antigens, CD20 , Immunotherapy, Adoptive/methods , Lymphoma, Large B-Cell, Diffuse/therapy , Receptors, Chimeric Antigen/therapeutic use , T-Lymphocytes/transplantation , Adult , Aged , Anemia/etiology , Antineoplastic Agents/therapeutic use , B-Lymphocytes , CD4-CD8 Ratio , Confidence Intervals , Cyclophosphamide/therapeutic use , Cytokine Release Syndrome/etiology , Female , Glycolysis , Humans , Ifosfamide/therapeutic use , Immunotherapy, Adoptive/adverse effects , Lymphoma, Large B-Cell, Diffuse/blood , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/mortality , Male , Middle Aged , Neutropenia/etiology , Progression-Free Survival , Recurrence , Thrombocytopenia/etiology , Time Factors , Transplantation Conditioning/methods , Treatment Outcome , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use , Young Adult
13.
Zhongguo Zhong Yao Za Zhi ; 43(16): 3235-3242, 2018 Aug.
Article in Chinese | MEDLINE | ID: mdl-30200724

ABSTRACT

Traditional Chinese medicine(TCM) has been increasingly used in the prevention and treatment of obesity and obesity-related diseases. However, its mechanism of action is not yet clear. In recent years, with the development of high-throughput sequencing technology, scientific researches have found that the disorder of gut microbiota is associated with obesity and other diseases. Furthermore, it has been found that TCM can improve the structure of gut microbiota by increasing probiotics and reducing pathogens, which play an importent role in preventing the development and progression of obesity and other diseases. This article first explores the possible association between intestinal microbiota and obesity. Then, it reviews the traditional Chinese medicine and its role in regulating intestinal microbiota for the prevention and treatment of diseases, including obesity and inflammation, insulin resistance, type 2 diabetes, non-alcoholic fatty liver disease, inflammatory bowel disease and other diseases, in theexpectation of new strategies and research direction for treating obesity and relevant diseases, and providing important guidance for further studies in this field in the future.


Subject(s)
Gastrointestinal Microbiome , Medicine, Chinese Traditional , Obesity/therapy , Diabetes Mellitus, Type 2/therapy , Humans , Inflammation/therapy , Inflammatory Bowel Diseases/therapy , Insulin Resistance , Non-alcoholic Fatty Liver Disease/therapy
14.
Oncol Rep ; 38(5): 2803-2813, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29048673

ABSTRACT

The medicinal mushroom Ganoderma lucidum (G. lucidum) has been reported to possess a variety of pharmacological activities including anticancer effects. However, the anti-colorectal cancer effects and the potential molecular mechanisms of the ethanol extracts of sporoderm-broken spores of G. lucidum (BSGLEE), which mainly contains triterpenoids, have not been reported. The aim of the present study was to investigate the anticancer effects and molecular mechanisms exerted by BSGLEE on colorectal cancer in vitro and in vivo. MTT assay revealed that BSGLEE at 1.6 to 10 mg/ml significantly inhibited HCT116 cell proliferation in a dose- and time-dependent manner. Flow cytometric analysis demonstrated that BSGLEE induces apoptosis and cell cycle arrest at G0/G1 phase, which are associated with deregulation of the expression of key genes and proteins (p21, p16, cyclin D1, Bcl-2, bax, NAG-1, PARP and caspase-3) that regulate apoptosis and cell cycle cascades. Moreover, BSGLEE significantly inhibited HCT116 cell migration via downregulating MMP-1, MMP-2 and upregulating E-cadherin expression at mRNA levels. Oral gavage of 75 and 150 mg/kg BSGLEE significantly inhibited HCT116 xenograft tumor growth in nude mice, which was accompanied by suppressed Ki-67 staining as determined by immunochemistry. Collectively, we found that BSGLEE effectively inhibits colorectal cancer carcinogenesis through induction of apoptosis, inhibition of migration and promotion of cell cycle arrest. Our results suggest that triterpenoids of sporoderm-broken spores of G. lucidum ethanol extracts may serve as a promising anticancer agent for colorectal cancer chemoprevention and therapy.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Colorectal Neoplasms/drug therapy , Ethanol/administration & dosage , Reishi/chemistry , Spores, Fungal/chemistry , Administration, Oral , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis Regulatory Proteins/genetics , Cell Cycle Proteins/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/genetics , Dose-Response Relationship, Drug , Ethanol/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Mice , Mice, Nude , Xenograft Model Antitumor Assays
15.
Int J Oncol ; 50(5): 1541-1554, 2017 May.
Article in English | MEDLINE | ID: mdl-28358412

ABSTRACT

Ganoderma lucidum (G. lucidum) polysaccharides (GLPs) have been used as traditional Chinese medicine for cancer prevention for many years. However, the mechanism by which GLP exerts its chemopreventive activities remains elusive. In addition, it is unclear whether sporoderm-broken spores of G. lucidum water extract (BSGLWE), which contains mainly GLPs, has anticancer effects on colorectal cancer. The present study investigated the anticancer effects and potential mechanisms of BSGLWE on colorectal cancer in vivo and in vitro. Our results showed that BSGLWE significantly inhibited colorectal cancer HCT116 cell viability in a time- and dose-dependent manner. Flow cytometry analysis indicated that BSGLWE disrupted cell cycle progression at G2/M phase via downregulation of cyclin B1 and cyclin A2, and upregulation of P21 at mRNA levels. Moreover, BSGLWE induced apoptosis by decreasing Bcl-2 and survivin at mRNA levels, and reduced Bcl-2, PARP, pro-caspase-3 and pro-caspase-9 at protein levels. Furthermore, BSGLWE suppressed tumor growth in vivo by regulating the expression of genes and proteins associated with cell cycle and apoptosis, which was further confirmed by a reduction of Ki67, PCNA, and Bcl-2 expression as determined by immunohistochemistry staining. NSAID activated gene-1 (NAG-1), a pro-apoptotic gene, was significantly upregulated in vivo and in vitro upon BSGLWE treatment at both mRNA and protein levels. In addition, the relative amounts of secreted NAG-1 in cell culture medium or serum of nude mice were all upregulated upon BSGLWE treatments, suggesting a role of NAG-1 in BSGLWE-induced anticolorectal cancer activity. This is the first study to show that BSGLWE inhibits colorectal cancer carcinogenesis through regulating genes responsible for cell proliferation, cell cycle and apoptosis cascades. These findings indicate that BSGLWE possesses chemopreventive potential in colorectal cancer which may serve as a promising anticancer agent for clinical applications.


Subject(s)
Anticarcinogenic Agents/administration & dosage , Colorectal Neoplasms/drug therapy , Plant Extracts/administration & dosage , Reishi/chemistry , Animals , Anticarcinogenic Agents/chemistry , Cell Division/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , HCT116 Cells , Humans , Medicine, Chinese Traditional , Mice , Plant Extracts/chemistry , Water/chemistry , Xenograft Model Antitumor Assays
16.
Oncol Lett ; 7(6): 1785-1789, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24932233

ABSTRACT

Normal mammalian terminal erythroid differentiation is a precisely regulated process during which the progenitor cells execute particular programs to form a mature erythrocytic phenotype. In the present study, it was found that RbAp48, a histone-binding protein associated with retinoblastoma protein, was upregulated during terminal erythroid maturation in vivo and in vitro. This indicated that RbAp48, at least in part, participated in the regulation of murine erythropoiesis. Following sodium butyrate (SB) induction, murine erythroleukemia (MEL) cells began to re-enter erythroid differentiation and the ratio of differentiated cells reached ~80% at 72 h. The erythroid maturation-related mRNA expression of α-globin, ß-globin and glycophorin A (GPA) was increased markedly, which indicated that SB induced MEL differentiation. During MEL differentiation, the RbAp48 level showed a 1.5-fold increase at 72 h, and the globin transcription factor (GATA)-1 level was also upregulated in the early stage of differentiation. By contrast, the c-Myc level was gradually downregulated in MEL differentiation. Using an immunofluorescence assay, the results of the study directly showed that the average fluorescence intensity of RbAp48 in each cell reached an almost 1.7-fold increase at 72 and 96 h. This was consistent with the western blot results of RbAp48 during MEL differentiation. In addition, reduced expression of RbAp48 by RNA inference decreased SB-induced MEL differentiation by ~20%, indicating that a high level of RbAp48 was essential for MEL differentiation. Taken together, these results established a functional link between RbAp48 and erythroid differentiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...