Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35062451

ABSTRACT

It is challenging to obtain wafer-scaled aligned films for completely exploiting the promising properties of semiconducting single-walled carbon nanotubes (s-SWCNTs). Aligned s-SWCNTs with a large area can be obtained by combining water evaporation and slow withdrawal-induced self-assembly in a dip-coating process. Moreover, the tunability of deposition morphology parameters such as stripe width and spacing is examined. The polarized Raman results show that s-SWCNTs can be aligned in ±8.6°. The derived two terminal photodetector shows both a high negative responsivity of 41 A/W at 520 nm and high polarization sensitivity. Our results indicate that aligned films with a large area may be useful to electronics- and optoelectronics-related applications.

2.
ACS Nano ; 16(1): 597-603, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34919386

ABSTRACT

Homojunctions and homosuperlattices are essential structures and have been widely explored for use in advanced electronic and optoelectronic devices. However, artificially manipulating crystalline phases in two-dimensional (2D) monolayers is still challenging, especially when attempting to engineer lateral homogeneous junctions in a single monolayer of transition metal dichalcogenides (TMDs). Herein, we demonstrate a lateral homosuperlattice (MLHS) with alternating 1T and 2H domains in a 2D WS2 monolayer plane. In MLHSs, the 2H domains, which are laterally localized and isolated by potential wells, manifest junction interfaces and irradiated photoluminescence (PL) with a lateral periodic distribution in the two-dimensional plane. The studies on MLHSs here can provide further understanding of lateral homojunctions and homosuperlattices in a monolayer plane, providing an alternative route to modulate optical and electronic behaviors in TMD monolayers.

SELECTION OF CITATIONS
SEARCH DETAIL
...