Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 149: 213395, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36990023

ABSTRACT

In the age of fathoming biomedical predicaments, ardently emerged the field of materiobiology to effectively counter the archetypal and outdated therapies. Correspondingly, the subpar activity of the over-the-counter wound dressing pharmaceuticals have been dominated with the implementation of biocompatible, water-retaining exotic hydrogels to facilitate accelerated diabetic wound healing. Considering a strategy to develop a pragmatic biomimetic scaffold having the ability of dynamic wound healing with diminutive inflammation, we investigated the creation of graphene quantum dot (GQD)-polyacrylic acid (PAA) hybrid hydrogel. We observe appropriate percentage of GQD incorporation in PAA to demonstrate lower pro-inflammatory cytokines, interleukin (IL-6), and tumour necrosis factor (TNF-α) along with higher anti-inflammatory (IL-10) expressions in contrast to natural and standard controls. Likewise, histological examinations corresponding to the in-vitro and in-vivo toxicological analysis of GQD-PAA manifested to be a non-toxic, biocompatible saviour of diabetic wounds. This hybrid hydrogel reports the quickest diabetic wound healing of 13 days. Additionally, the hybrid hydrogel also demonstrates salient antibacterial activity against E. coli. We explore a multifaceted mechanistic approach attributed by the hybrid framework as an avant-garde solution in materiobiology and diabetic wound healing nexus. We believe the GQD-hybrid hydrogel reveals an advancement that could portray a new horizon against diabetic wounds.


Subject(s)
Diabetes Mellitus , Graphite , Quantum Dots , Humans , Hydrogels , Graphite/pharmacology , Quantum Dots/therapeutic use , Escherichia coli , Biomimetics , Wound Healing
2.
ACS Omega ; 7(26): 22061-22072, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35811909

ABSTRACT

An enchanting yet challenging task is the development of higher productivity in plants to meet the ample food demands for the growing global population while harmonizing the ecosystem using front-line technologies. This has kindled the practice of green microalgae cultivation as a driver of key biostimulant products, targeting agronomic needs. To this end, a prodigious and economical strategy for producing bioactive compounds (sources of secondary metabolites) from microalgae using carbon-based nanomaterials (CNMs) as a platform can circumvent these hurdles. Recently, the nanobionics approach of incorporating CNMs with living systems has emerged as a promising technique to develop organelles with new and augmented functions. Herein, we discuss the importance of 2D carbon nanosheets (CNS) as an alternative carbon source for the phototrophic cultivation of microalgae. CNS not only aids in cost reduction for algal cultivation but also confers combinatorial innate or exogenous functions that enhance its programmed biosynthetic metabolism, proliferation, or tolerance to stress. Moreover, the inherent ability of CNS to act as efficient biocatalysts can enhance the rate of photosynthesis. The primary focus of this mini-review is the development of an economic route for enhanced yield of bioactive compounds while simultaneously serving as a heterogeneous platform for enhancing the sustainable production of biostimulants including bioactive compounds from algal biomass for pharmaceutical and nutraceutical applications.

3.
Biomater Sci ; 10(7): 1647-1679, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35262124

ABSTRACT

Engineered well-ordered hybrid nanomaterials are symbolically at a pivotal point, just ahead of the long-anticipated transformation of the human race. Incorporating newer carbon nanomaterials like graphene quantum dots (GQDs) with tetrapyrrolic porphyrins (Pp) and phthalocyanines (Pc) is crucial for achieving exquisite molecular nanoarchitectures that are superior to their individual components. The outcomes of this, particularly in the case of graphene quantum dot-porphyrin/phthalocyanine (GQD-Pp/Pc) hybrids, remain comprehensively unexplored to date. Interestingly, GQD-Pp/Pc hybrids provide a modern strategy to regulate matter by utilising intramolecular and organisational properties to create well-defined nanocomposites via a synergistic enhancement effect. The high molar absorption coefficient and enhanced energy transfer, hole and electron transfer abilities capabilities allow Pp and Pc to exhibit a wide spectrum of photophysical and photochemical features. However, their low biostability, non-specific tumor-targeting properties, hydrophobicity, and low cellular internalisation efficiency limit their extensive biomedical utility. Conjugating Pp/Pc to nanocarriers such as GQDs improves their targeted delivery, immunological tolerance, and longevity. Due to the zero-order release kinetics of GQDs, they can assist in maintaining a steady rate of photosensitiser (PS) delivery at the desired site. To completely rationalise the functionalization of GQD-Pp/Pc species at interfaces, we investigate the current prominence and future potential of porphyrin-related graphene nanosystems, especially GQDs, for the development of various applications. This encouraging report demonstrates how GQD-Pp/Pc species can be used to examine new phenomena at the multidisciplinary level. Notably, a customised hybrid system optimises amendable and diverse functional properties, yielding a ray of hope in the fields of photodynamic therapy (PDT), photocatalysis, solar cells, sensing, and beyond via various photo-physicochemical approaches such as electron transfer, catalytic transformation, light-harvesting, and axial/peripheral ligation of adducts. Gratifyingly, the covalent and non-covalent coupling of functional molecular units at interfaces enable new properties to be generated in hybrid systems.


Subject(s)
Graphite , Nanocomposites , Porphyrins , Quantum Dots , Graphite/chemistry , Humans , Isoindoles , Quantum Dots/chemistry
4.
Nano Today ; 35: 101001, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33052202

ABSTRACT

Preventing the trajectory of human coronaviruses including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic could rely on the sprint to design a rational roadmap using breakneck strategies to counter its prime challenges. Recently, carbon quantum dots (CQDs), zero-dimensional (0D) carbon-based nanomaterials, have emerged as a fresh antiviral agent owing to their unique physicochemical properties. Additionally, doping instils beneficial properties in CQDs, augmenting their antiviral potential. The antiviral properties of CQDs can be reinforced by heteroatom doping. Bestowed with multifaceted features, functionalized CQDs can interact with the spike protein of the human coronaviruses and perturb the virus-host cell recognition. Recently, triazole derivatives have been explored as potent inhibitors of human coronaviruses by blocking the viral enzymes such as 3-chymotrypsin-like protease (3CLpro) and helicase, important for viral replication. Moreover, they offer a better aromatic heterocyclic core for therapeutics owing to their higher thermodynamic stability. To curb the current outbreak, triazole functionalized heteroatom co-doped carbon quantum dots (TFH-CQDs) interacting with viral cells spanning the gamut of complexity can be utilized for deciphering the mystery of its inhibitory mechanism against human coronaviruses. In this quest to unlock the potential of antiviral carbon-based nanomaterials, CQDs and triazole conjugated CQDs template comprising a series of bioisosteres, CQDs-1 to CQDs-9, can extend the arsenal of functional antiviral materials at the forefront of the war against human coronaviruses.

5.
ACS Nano ; 13(8): 9397-9407, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31381848

ABSTRACT

Graphene quantum dots (GQDs) are the harbingers of a paradigm shift that revitalize self-assembly of the colloidal puzzle by adding shape and size to the material-design palette. Although self-assembly is ubiquitous in nature, the extent to which these molecular legos can be engineered reminds us that we are still apprenticing polymer carpenters. In this quest to unlock exotic nanostructures ascending from eventual anisotropy, we have utilized different concentrations of GQDs as a filler in free-radical-mediated aqueous copolymerization. Extensive polymer grafting over the geometrically confined landscape of GQDs (0.05%) bolsters crystallization instilling a loom which steers interaction of polymeric cilia into interlaced equilateral triangles with high sophistication. Such two-dimensional (2D) assemblies epitomizing the planar tiling of "Star of David" forming a molecular kagome lattice (KL) without metal templation evoke petrichor. Interestingly, a higher percentage (0.3%) of GQDs allow selective tuning of the interfacial property of copolymers breaking symmetry due to surface energy incongruity, producing exotic Janus nanomicelles (JNMs). Herein, with the help of a suite of characterizations, we delineate the mechanism behind the formation of the KL and JNMs which forms a depot of heightened drug accretion with targeted delivery of 5-fluorouracil in the colon as validated by gamma scintigraphy studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...