Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Urolithiasis ; 51(1): 112, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37707563

ABSTRACT

High intra-pelvic pressure (IPP) during ureteroscopy can lead to complications including pyelovenous backflow, bleeding, and infection. Our primary goal was to identify the best cross-section and orientation of a ureteroscope within a Ureteral Access Sheath (UAS) to minimize IPP and maximize outflow. Our secondary goal was to validate our findings with a UAS prototype. To determine the optimal ureteroscope cross-section within a UAS, four ureteroscopes of equivalent cross-sectional area were simulated within a 10 Fr UAS using computational fluid dynamics software COMSOL. We then created a corresponding prototype by securing a 3-0 monofilament suture at the inferior aspect of the 12 Fr outer UAS, inducing an offset to the ureteroscope. Mean flow volumes through a 10/12 Fr UAS occupied by a 9.5-Fr single-use flexible ureteroscope were compared (17 iterations) to those through our prototype UAS. During the simulation, the lowest IPP and highest outflow were seen with an offset circular ureteroscope (41% resistance) compared to a ureteroscope centered in the UAS. The unmodified UAS had an average volume of 30.0 mL/min (SD ± 0.35) compared to 33.76 mL/min (SD ± 0.90) for the modified UAS (p < 0.05). We found that using a circular ureteroscope positioned along the sidewall maximizes outflow through a circular UAS. We made a prototype UAS to offset the ureteroscope and observed a 12.5% increase in outflow. This approach can potentially decrease IPP during ureteroscopy without impacting inflow or the working channel. Although modifying a ureteroscope is more difficult, it could create an offset without reducing UAS cross-section.


Subject(s)
Ureter , Ureteroscopes , Humans , Hydrodynamics , Ureteroscopy/adverse effects , Computer Simulation
2.
Cytoskeleton (Hoboken) ; 74(7): 260-280, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28472849

ABSTRACT

Cilia or eukaryotic flagella are slender 200-nm-diameter organelles that move the immersing fluid relative to a cell and sense the environment. Their core structure is nine doublet microtubules (DMTs) arranged around a central-pair. When motile, thousands of tiny motors slide the DMTs relative to each other to facilitate traveling waves of bending along the cilium's length. These motors provide the energy to change the shape of the cilium and overcome the viscous forces of moving in the surrounding fluid. In planar beating, motors walk toward where the cilium is attached to the cell body. Traveling waves are initiated by motors bending the elastic cilium back and forth, a self-organized mechanical oscillator. We found remarkably that the energy in a wave is nearly constant over a wide range of (ATP) and medium viscosities and inter-doublet springs operate only in the central and not in the basal region. Since the energy in a wave does not depend on its rate of formation, the control mechanism is likely purely mechanical. Further the torque per length generated by the motors acting on the doublets is proportional to and nearly in phase with the microtubule sliding velocity with magnitude dependent on the medium. We determined the frequency-dependent elastic moduli and strain energies of beating cilia. Incorporation of these in an energy-based model explains the beating frequency, wavelength, limiting of the wave amplitude and the overall energy of the traveling wave. Our model describes the intricacies of the basal-wave initiation as well as the traveling wave.


Subject(s)
Cilia/metabolism , Flagella/metabolism , Organelles/metabolism , Animals , Cell Movement , Models, Biological
3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 1): 011603, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19658711

ABSTRACT

When a drop of liquid containing particles is allowed to evaporate from a substrate, the flow induced by the liquid evaporating from the drop edge carries the particles to the edge. If these particles prevent the drop edge from receding as the evaporation proceeds, then more particles will be accumulated near the drop edge resulting in the formation of a deposit that resembles coffee rings. We determine the capillary force on the particles near a drop edge and the effect of the particles on the gas-liquid-substrate contact angle to derive a condition that must be satisfied for particles to form the ringlike pattern.

SELECTION OF CITATIONS
SEARCH DETAIL
...