Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1005(1-2): 67-76, 2004 Apr 16.
Article in English | MEDLINE | ID: mdl-15044066

ABSTRACT

The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential neurotoxin in the etiology of Parkinson's disease (PD). Salsolinol and N-methyl(R)-salsolinol were identified in the brains and cerebrospinal fluid (CSF) of PD patients. Oxidative stress is known to be one of the major contributing factors in the cascade that may finally leads to the cell death in PD. The present study was undertaken to understand the role of salsolinol in oxidative-mediated neuronal toxicity in dopaminergic SH-SY5Y cells, and the neuroprotective effects of metallothionein (MT) against salsolinol toxicity in MT overexpressing (MT(trans)) fetal mesencephalic cells. Salsolinol increased the production of reactive oxygen species (ROS) and significantly decreased glutathione (GSH) levels and cell viability in SH-SY5Y cells. Salsolinol also decreased intracellular ATP levels and induced nuclear condensation in these cells. Salsolinol-induced depletion in cell viability was completely prevented by N-acetylcysteine in SH-SY5Y cells, and also prevented by MT in MT(trans) fetal mesencephalic cells compared to control(wt) cells. The extent of nuclear condensation and caspase activation was also less in MT(trans) cells than control(wt) cells. These results suggest that salsolinol causes oxidative stress by decreasing the levels of GSH and by increasing ROS production, and these events may lead to the death of dopaminergic cell. Furthermore, MT overexpression may protect dopaminergic neurons against salsolinol-induced neurotoxicity, most probably by the inhibition of oxidative stress and apoptotic pathways including caspase-3 activation.


Subject(s)
Dopamine/metabolism , Isoquinolines/pharmacology , Metallothionein/pharmacology , Oxidative Stress/drug effects , Animals , Cell Death/drug effects , Cell Death/physiology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Isoquinolines/metabolism , Mesencephalon/cytology , Mesencephalon/drug effects , Mesencephalon/physiology , Mice , Mice, Transgenic , Oxidative Stress/physiology , Tetrahydroisoquinolines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...