Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 8(10): 3824-3835, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37769211

ABSTRACT

In this report, we investigate the room-temperature gas sensing performance of heterostructure transition metal dichalcogenide (MoSe2/MoS2, WS2/MoS2, and WSe2/MoS2) thin films grown over a silicon substrate using a pulse laser deposition technique. The sensing response of the aforementioned sensors to a low concentration range of NO2, NH3, H2, CO, and H2S gases in air has been assessed at room temperature. The obtained results reveal that the heterojunctions of metal dichalcogenide show a drastic change in gas sensing performance compared to the monolayer thin films at room temperature. Nevertheless, the WSe2/MoS2-based sensor was found to have an excellent selectivity toward NO2 gas with a particularly high sensitivity of 10 ppb. The sensing behavior is explained on the basis of a change in electrical resistance as well as carrier localization prospects. Favorably, by developing a heterojunction of diselenide and disulfide nanomaterials, one may find a simple way of improving the sensing capabilities of gas sensors at room temperature.


Subject(s)
Molybdenum , Nitrogen Dioxide , Temperature , Disulfides , Gases
2.
ACS Omega ; 8(32): 29663-29673, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37599967

ABSTRACT

In view of facile, cost-effective, and environmentally friendly synthetic methods, palladium-doped copper oxide (Pd-CuO) nanoparticles have been synthesized from Ocimum sanctum (commonly known as "Tulsi") phytoextract for gas-sensing applications. The structural, morphological, and compositional properties of Pd-doped CuO nanoparticles were studied using various techniques such as XRD, FESEM, XPS, and EDX. The characterization results confirmed the doping of Pd on CuO nanoparticles, and Pd-CuO nanostructures appear as nanoflakes in FESEM analysis. The gas-sensing response of Pd (1.12 wt %)-CuO nanoflake-based sensor was measured at 5-100 ppm concentration of different gases, NO2, H2S, NH3, and H2, at 125 °C. Gas-sensing tests reveal that the sensitivity of the sensor were 81.7 and 38.9% for 100 and 5 ppm concentrations of NO2, respectively, which was significantly greater than that of pure CuO. The response and recovery times of the sensor were 72 and 98 s for 100 ppm of NO2 gas, while they were 90 and 50 s for 5 ppm NO2. The calculated limit of detection (LOD) value of the sensor is 0.8235. This appealing LOD is suitable for real-time gas detection. The gas sensor was found to exhibit excellent selectivity toward NO2 gas and repeatability and stability in humid (80%) conditions. The Pd doping in CuO nanostructures plays a significant role in escalating the sensitivity and selectivity of CuO-based NO2 gas sensor suitable to work at low operating temperatures.

3.
Light Sci Appl ; 8: 121, 2019.
Article in English | MEDLINE | ID: mdl-31871673

ABSTRACT

Transparent solar cells (TSCs) are emerging devices that combine the advantages of visible transparency and light-to-electricity conversion. Currently, existing TSCs are based predominantly on organics, dyes, and perovskites; however, the rigidity and color-tinted transparent nature of those devices strongly limit the utility of the resulting TSCs for real-world applications. Here, we demonstrate a flexible, color-neutral, and high-efficiency TSC based on a freestanding form of n-silicon microwires (SiMWs). Flat-tip SiMWs with controllable spacing are fabricated via deep-reactive ion etching and embedded in a freestanding transparent polymer matrix. The light transmittance can be tuned from ~10 to 55% by adjusting the spacing between the microwires. For TSCs, a heterojunction is formed with a p-type polymer in the top portion of the n-type flat-tip SiMWs. Ohmic contact with an indium-doped ZnO film occurs at the bottom, and the side surface has an Al2O3 passivation layer. Furthermore, slanted-tip SiMWs are developed by a novel solvent-assisted wet etching method to manipulate light absorption. Finite-difference time-domain simulation revealed that the reflected light from slanted-tip SiMWs helps light-matter interactions in adjacent microwires. The TSC based on the slanted-tip SiMWs demonstrates 8% efficiency at a visible transparency of 10% with flexibility. This efficiency is the highest among Si-based TSCs and comparable with that of state-of-the-art neutral-color TSCs based on organic-inorganic hybrid perovskite and organics. Moreover, unlike others, the stretchable and transparent platform in this study is promising for future TSCs.

4.
Adv Sci (Weinh) ; 5(9): 1800816, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30250810

ABSTRACT

Room-temperature (RT) gas sensitivity of morphology-controlled free-standing hollow aluminum-doped zinc oxide (AZO) nanofibers for NO2 gas sensors is presented. The free-standing hollow nanofibers are fabricated using a polyvinylpyrrolidone fiber template electrospun on a copper electrode frame followed by radio-frequency sputtering of an AZO thin overlayer and heat treatment at 400 °C to burn off the polymer template. The thickness of the AZO layer is controlled by the deposition time. The gas sensor based on the hollow nanofibers demonstrates fully recoverable n-type RT sensing of low concentrations of NO2 (0.5 ppm). A gas sensor fabricated with Al2O3-filled AZO nanofibers exhibits no gas sensitivity below 75 °C. The gas sensitivity of a sensor is determined by the density of molecules above the minimum energy for adsorption, collision frequency of gas molecules with the surface, and available adsorption sites. Based on finite-difference time-domain simulations, the RT sensitivity of hollow nanofiber sensors is ascribed to the ten times higher collision frequency of NO2 molecules confined inside the fiber compared to the outer surface, as well as twice the surface area of hollow nanofibers compared to the filled ones. This approach might lead to the realization of RT sensitive gas sensors with 1D nanostructures.

5.
Appl Opt ; 55(29): 8368-8375, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27828089

ABSTRACT

In the present work, optically thick nanostructured titanium (Ti) films of thickness ranging from ∼100 to 900 nm were deposited on a glass substrate by DC magnetron sputtering at room temperature. Microstructural and surface properties of the samples were studied by x-ray diffraction and x-ray photoelectron spectroscopy (XPS). The morphological results revealed a systematic normal grain growth mechanism with increasing thickness analyzed by a scanning electron microscope. The influence of thickness on film surface roughness has been investigated by atomic force microscopy (AFM). The optical dispersion behavior was examined by spectroscopic ellipsometry (SE) over the long wavelength range of 246-1688 nm. The experimentally observed SE parameters were theoretically fitted with Drude-Lorentz and Bruggeman effective medium approximation theory. The surface properties of the Ti film measured by XPS and AFM were further accounted for in the optical model to determine optical constants (n and k) and the obtained results are expected to be the best available for bulk Ti metal.

SELECTION OF CITATIONS
SEARCH DETAIL
...