Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 92(6): 4317-4325, 2020 03 17.
Article in English | MEDLINE | ID: mdl-31985206

ABSTRACT

Reusability of sensors is relevant when aiming to decrease variation between measurements, as well as cost and time of analysis. We present an electrochemically assisted surface-enhanced Raman spectroscopy (SERS) platform with the capability to reverse the analyte-surface interaction, without damaging the SERS substrate, allowing for efficient sensor reuse. The platform was used in combination with a sample pretreatment step, when detecting melamine from milk. We found that the electrochemically enhanced analyte-surface interaction results in significant improvement in detection sensitivity, with detection limits (0.01 ppm in PBS and 0.3 ppm in milk) below the maximum allowed levels in food samples. The reversibility of interaction enabled continuous measurement in aqueous solution and a complete quantitative assay on a single SERS substrate.


Subject(s)
Milk/chemistry , Triazines/analysis , Animals , Cattle , Electrochemical Techniques , Spectrum Analysis, Raman
2.
Anal Chem ; 91(18): 11620-11628, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31335122

ABSTRACT

Interfacing electrochemical sensors in a lab-on-a-disc (LoD) system with a potentiostat is often tedious and challenging. We here present the first multichannel, modular, lightweight, and wirelessly powered, custom-built potentiostat-on-a-disc (PoD) for centrifugal microfluidic applications. The developed potentiostat is in the form factor of a typical digital video disc (DVD) and weighs only 127 g. The design of the potentiostat facilitates easy and robust interfacing with the electrodes in the LoD system, while enabling real-time electrochemical detection during rotation. The device can perform different electroanalytical techniques such as cyclic voltammetry, square wave voltammetry, and amperometry while being controlled by custom-made software. Measurements were conducted with and without rotation using both in-house fabricated and commercial electrodes. The performance of the PoD was in good agreement with the results obtained using a commercial potentiostat with a measured current resolution of 200 pA. As a proof of concept, we performed a real-time release study of an electrochemically active compound from microdevices used for drug delivery.

3.
ACS Sens ; 4(2): 398-405, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30525464

ABSTRACT

Development of microsystems, which enable "sample-to-answer" detection from real samples, is often challenging. We present the first integration of supported liquid membrane extraction combined with electrochemical detection on a centrifugal fluidic platform. The developed lab-on-a-disc (LoD) system enabled the separation, enrichment, and subsequent electrochemical detection of the target analyte from a complex sample mixture. As a case study, we quantified the amount of a dietary supplement and pharmaceutical precursor, p-coumaric acid, from bacterial growth media at different time points during production. The assay, extraction, and detection, performed on the LoD device, proved to be a low cost and environmentally friendly approach, requiring only a few tens of microliters of organic solvent and enabled detection in a 3 µL volume. In addition, the data obtained from the centrifugal platform showed a good correlation with data obtained from the high performance liquid chromatography analysis.


Subject(s)
Chemical Fractionation/instrumentation , Electrochemistry/instrumentation , Escherichia coli/metabolism , Lab-On-A-Chip Devices , Metabolomics/instrumentation
4.
ACS Sens ; 2(12): 1869-1875, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29164868

ABSTRACT

In this work, we present a dual-functional sensor that can perform surface-enhanced Raman spectroscopy (SERS) based identification and electrochemical (EC) quantification of analytes in liquid samples. A lithography-free reactive ion etching process was utilized to obtain nanostructures of high aspect ratios distributed homogeneously on a 4 in. fused silica wafer. The sensor was made up of three-electrode array, obtained by subsequent e-beam evaporation of Au on nanostructures in selected areas through a shadow mask. The SERS performance was evaluated through surface-averaged enhancement factor (EF), which was ∼6.2 × 105, and spatial uniformity of EF, which was ∼13% in terms of relative standard deviation. Excellent electrochemical performance and reproducibility were revealed by recording cyclic voltammograms. On nanostructured electrodes, paracetamol (PAR) showed an improved quasi-reversible behavior with decrease in peak potential separation (ΔEp ∼ 90 mV) and higher peak currents (Ipa/Ipc ∼ 1), compared to planar electrodes (ΔEp ∼ 560 mV). The oxidation potential of PAR was also lowered by ∼80 mV on nanostructured electrodes. To illustrate dual-functional sensing, quantitative evaluation of PAR ranging from 30 µM to 3 mM was realized through EC detection, and the presence of PAR was verified by its SERS fingerprint.


Subject(s)
Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Acetaminophen/analysis , Electrodes , Gold/chemistry , Oxidation-Reduction , Surface Properties
5.
Mater Sci Eng C Mater Biol Appl ; 61: 180-9, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26838839

ABSTRACT

Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible with different polymers, making it suitable for engineering various large scale organs/tissues.


Subject(s)
Materials Testing , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds/chemistry , Hep G2 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...