Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 21(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-38211344

ABSTRACT

Deep brain stimulation (DBS) using Medtronic's Percept™ PC implantable pulse generator is FDA-approved for treating Parkinson's disease (PD), essential tremor, dystonia, obsessive compulsive disorder, and epilepsy. Percept™ PC enables simultaneous recording of neural signals from the same lead used for stimulation. Many Percept™ PC sensing features were built with PD patients in mind, but these features are potentially useful to refine therapies for many different disease processes. When starting our ongoing epilepsy research study, we found it difficult to find detailed descriptions about these features and have compiled information from multiple sources to understand it as a tool, particularly for use in patients other than those with PD. Here we provide a tutorial for scientists and physicians interested in using Percept™ PC's features and provide examples of how neural time series data is often represented and saved. We address characteristics of the recorded signals and discuss Percept™ PC hardware and software capabilities in data pre-processing, signal filtering, and DBS lead performance. We explain the power spectrum of the data and how it is shaped by the filter response of Percept™ PC as well as the aliasing of the stimulation due to digitally sampling the data. We present Percept™ PC's ability to extract biomarkers that may be used to optimize stimulation therapy. We show how differences in lead type affects noise characteristics of the implanted leads from seven epilepsy patients enrolled in our clinical trial. Percept™ PC has sufficient signal-to-noise ratio, sampling capabilities, and stimulus artifact rejection for neural activity recording. Limitations in sampling rate, potential artifacts during stimulation, and shortening of battery life when monitoring neural activity at home were observed. Despite these limitations, Percept™ PC demonstrates potential as a useful tool for recording neural activity in order to optimize stimulation therapies to personalize treatment.


Subject(s)
Deep Brain Stimulation , Epilepsy , Essential Tremor , Parkinson Disease , Humans , Thalamus , Epilepsy/diagnosis , Epilepsy/therapy , Parkinson Disease/therapy , Essential Tremor/diagnosis , Essential Tremor/therapy
2.
J Neural Eng ; 20(3)2023 05 31.
Article in English | MEDLINE | ID: mdl-37187172

ABSTRACT

Objective.The objective of this study was to investigate the effects of micromagnetic stimuli strength and frequency from theMagneticPen(MagPen) on the rat right sciatic nerve. The nerve's response was measured by recording muscle activity and movement of the right hind limb.Approach.The MagPen was custom-built to be stably held over the sciatic nerve. Rat leg muscle twitches were captured on video, and movements were extracted using image processing algorithms. EMG recordings were also used to measure muscle activity.Main results.The MagPen prototype, when driven by an alternating current, generates a time-varying magnetic field, which, according to Faraday's law of electromagnetic induction, induces an electric field for neuromodulation. The orientation-dependent spatial contour maps of the induced electric field from the MagPen prototype have been numerically simulated. Furthermore, in thisin vivowork onµMS, a dose-response relationship has been reported by experimentally studying how varying the amplitude (Range: 25 mVp-pthrough 6Vp-p) and frequency (range: 100 Hz through 5 kHz) of the MagPen stimuli alters hind limb movement. The primary highlight of this dose-response relationship (repeated overnrats, wheren= 7) is that for aµMS stimuli of higher frequency, significantly smaller amplitudes can trigger hind limb muscle twitch. This frequency-dependent activation can be justified by Faraday's Law, which states that the magnitude of the induced electric field is directly proportional to the frequency.Significance.This work reports thatµMS can successfully activate the sciatic nerve in a dose-dependent manner. The impact of this dose-response curve addresses the controversy in this research community about whether the stimulation from theseµcoils arise from a thermal effect or micromagnetic stimulation. MagPen probes do not have a direct electrochemical interface with tissue and therefore do not experience electrode degradation, biofouling, and irreversible redox reactions like traditional direct contact electrodes. Magnetic fields from theµcoils create more precise activation than electrodes because they apply more focused and localized stimulation. Finally, unique features ofµMS, such as the orientation dependence, directionality, and spatial specificity, have been discussed.


Subject(s)
Muscle, Skeletal , Sciatic Nerve , Rats , Animals , Sciatic Nerve/physiology , Muscle, Skeletal/physiology , Electrodes , Electric Stimulation/methods
3.
Adv Healthc Mater ; 8(23): e1900892, 2019 12.
Article in English | MEDLINE | ID: mdl-31697052

ABSTRACT

Implanted neural stimulation and recording devices hold vast potential to treat a variety of neurological conditions, but the invasiveness, complexity, and cost of the implantation procedure greatly reduce access to an otherwise promising therapeutic approach. To address this need, a novel electrode that begins as an uncured, flowable prepolymer that can be injected around a neuroanatomical target to minimize surgical manipulation is developed. Referred to as the Injectrode, the electrode conforms to target structures forming an electrically conductive interface which is orders of magnitude less stiff than conventional neuromodulation electrodes. To validate the Injectrode, detailed electrochemical and microscopy characterization of its material properties is performed and the feasibility of using it to stimulate the nervous system electrically in rats and swine is validated. The silicone-metal-particle composite performs very similarly to pure wire of the same metal (silver) in all measures, including exhibiting a favorable cathodic charge storage capacity (CSCC ) and charge injection limits compared to the clinical LivaNova stimulation electrode and silver wire electrodes. By virtue of its simplicity, the Injectrode has the potential to be less invasive, more robust, and more cost-effective than traditional electrode designs, which could increase the adoption of neuromodulation therapies for existing and new indications.


Subject(s)
Peripheral Nerves/physiology , Polymers/chemistry , Biocompatible Materials/chemistry , Dielectric Spectroscopy , Electrochemistry , Electrodes , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...