Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
medRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562867

ABSTRACT

Introduction: Portable devices capable of electrocardiogram (ECG) acquisition have the potential to enhance structural heart disease (SHD) management by enabling early detection through artificial intelligence-ECG (AI-ECG) algorithms. However, the performance of these AI algorithms for identifying SHD in a real-world screening setting is unknown. To address this gap, we aim to evaluate the validity of our wearable-adapted AI algorithm, which has been previously developed and validated for detecting SHD from single-lead portable ECGs in patients undergoing routine echocardiograms in the Yale New Haven Hospital (YNHH). Research Methods and Analysis: This is the protocol for a cross-sectional study in the echocardiographic laboratories of YNHH. The study will enroll 585 patients referred for outpatient transthoracic echocardiogram (TTE) as part of their routine clinical care. Patients expressing interest in participating in the study will undergo a screening interview, followed by enrollment upon meeting eligibility criteria and providing informed consent. During their routine visit, patients will undergo a 1-lead ECG with two devices - one with an Apple Watch and the second with another portable 1-lead ECG device. With participant consent, these 1-lead ECG data will be linked to participant demographic and clinical data recorded in the YNHH electronic health records (EHR). The study will assess the performance of the AI-ECG algorithm in identifying SHD, including left ventricular systolic dysfunction (LVSD), valvular disease and severe left ventricular hypertrophy (LVH), by comparing the algorithm's results with data obtained from TTE, which is the established gold standard for diagnosing SHD. Ethics and Dissemination: All patient EHR data required for assessing eligibility and conducting the AI-ECG will be accessed through secure servers approved for protected health information. Data will be maintained on secure, encrypted servers for a minimum of five years after the publication of our findings in a peer-reviewed journal, and any unanticipated adverse events or risks will be reported by the principal investigator to the Yale Institutional Review Board, which has reviewed and approved this protocol (Protocol Number: 2000035532).

2.
medRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562897

ABSTRACT

Background: Risk stratification strategies for cancer therapeutics-related cardiac dysfunction (CTRCD) rely on serial monitoring by specialized imaging, limiting their scalability. Objectives: To examine an artificial intelligence (AI)-enhanced electrocardiographic (AI-ECG) surrogate for imaging risk biomarkers, and its association with CTRCD. Methods: Across a five-hospital U.S.-based health system (2013-2023), we identified patients with breast cancer or non-Hodgkin lymphoma (NHL) who received anthracyclines (AC) and/or trastuzumab (TZM), and a control cohort receiving immune checkpoint inhibitors (ICI). We deployed a validated AI model of left ventricular systolic dysfunction (LVSD) to ECG images (≥0.1, positive screen) and explored its association with i) global longitudinal strain (GLS) measured within 15 days (n=7,271 pairs); ii) future CTRCD (new cardiomyopathy, heart failure, or left ventricular ejection fraction [LVEF]<50%), and LVEF<40%. In the ICI cohort we correlated baseline AI-ECG-LVSD predictions with downstream myocarditis. Results: Higher AI-ECG LVSD predictions were associated with worse GLS (-18% [IQR:-20 to -17%] for predictions<0.1, to -12% [IQR:-15 to -9%] for ≥0.5 (p<0.001)). In 1,308 patients receiving AC/TZM (age 59 [IQR:49-67] years, 999 [76.4%] women, 80 [IQR:42-115] follow-up months) a positive baseline AI-ECG LVSD screen was associated with ~2-fold and ~4.8-fold increase in the incidence of the composite CTRCD endpoint (adj.HR 2.22 [95%CI:1.63-3.02]), and LVEF<40% (adj.HR 4.76 [95%CI:2.62-8.66]), respectively. Among 2,056 patients receiving ICI (age 65 [IQR:57-73] years, 913 [44.4%] women, follow-up 63 [IQR:28-99] months) AI-ECG predictions were not associated with ICI myocarditis (adj.HR 1.36 [95%CI:0.47-3.93]). Conclusion: AI applied to baseline ECG images can stratify the risk of CTRCD associated with anthracycline or trastuzumab exposure.

3.
medRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38633808

ABSTRACT

Background: Current risk stratification strategies for heart failure (HF) risk require either specific blood-based biomarkers or comprehensive clinical evaluation. In this study, we evaluated the use of artificial intelligence (AI) applied to images of electrocardiograms (ECGs) to predict HF risk. Methods: Across multinational longitudinal cohorts in the integrated Yale New Haven Health System (YNHHS) and in population-based UK Biobank (UKB) and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), we identified individuals without HF at baseline. Incident HF was defined based on the first occurrence of an HF hospitalization. We evaluated an AI-ECG model that defines the cross-sectional probability of left ventricular dysfunction from a single image of a 12-lead ECG and its association with incident HF. We accounted for the competing risk of death using the Fine-Gray subdistribution model and evaluated the discrimination using Harrel's c-statistic. The pooled cohort equations to prevent HF (PCP-HF) were used as a comparator for estimating incident HF risk. Results: Among 231,285 individuals at YNHHS, 4472 had a primary HF hospitalization over 4.5 years (IQR 2.5-6.6) of follow-up. In UKB and ELSA-Brasil, among 42,741 and 13,454 people, 46 and 31 developed HF over a follow-up of 3.1 (2.1-4.5) and 4.2 (3.7-4.5) years, respectively. A positive AI-ECG screen portended a 4-fold higher risk of incident HF among YNHHS patients (age-, sex-adjusted HR [aHR] 3.88 [95% CI, 3.63-4.14]). In UKB and ELSA-Brasil, a positive-screen ECG portended 13- and 24-fold higher hazard of incident HF, respectively (aHR: UKBB, 12.85 [6.87-24.02]; ELSA-Brasil, 23.50 [11.09-49.81]). The association was consistent after accounting for comorbidities and the competing risk of death. Higher model output probabilities were progressively associated with a higher risk for HF. The model's discrimination for incident HF was 0.718 in YNHHS, 0.769 in UKB, and 0.810 in ELSA-Brasil. Across cohorts, incorporating model probability with PCP-HF yielded a significant improvement in discrimination over PCP-HF alone. Conclusions: An AI model applied to images of 12-lead ECGs can identify those at elevated risk of HF across multinational cohorts. As a digital biomarker of HF risk that requires just an ECG image, this AI-ECG approach can enable scalable and efficient screening for HF risk.

4.
medRxiv ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38405776

ABSTRACT

Timely and accurate assessment of electrocardiograms (ECGs) is crucial for diagnosing, triaging, and clinically managing patients. Current workflows rely on a computerized ECG interpretation using rule-based tools built into the ECG signal acquisition systems with limited accuracy and flexibility. In low-resource settings, specialists must review every single ECG for such decisions, as these computerized interpretations are not available. Additionally, high-quality interpretations are even more essential in such low-resource settings as there is a higher burden of accuracy for automated reads when access to experts is limited. Artificial Intelligence (AI)-based systems have the prospect of greater accuracy yet are frequently limited to a narrow range of conditions and do not replicate the full diagnostic range. Moreover, these models often require raw signal data, which are unavailable to physicians and necessitate costly technical integrations that are currently limited. To overcome these challenges, we developed and validated a format-independent vision encoder-decoder model - ECG-GPT - that can generate free-text, expert-level diagnosis statements directly from ECG images. The model shows robust performance, validated on 2.6 million ECGs across 6 geographically distinct health settings: (1) 2 large and diverse US health systems- Yale-New Haven and Mount Sinai Health Systems, (2) a consecutive ECG dataset from a central ECG repository from Minas Gerais, Brazil, (3) the prospective cohort study, UK Biobank, (4) a Germany-based, publicly available repository, PTB-XL, and (5) a community hospital in Missouri. The model demonstrated consistently high performance (AUROC≥0.81) across a wide range of rhythm and conduction disorders. This can be easily accessed via a web-based application capable of receiving ECG images and represents a scalable and accessible strategy for generating accurate, expert-level reports from images of ECGs, enabling accurate triage of patients globally, especially in low-resource settings.

5.
J Am Med Inform Assoc ; 31(4): 855-865, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38269618

ABSTRACT

OBJECTIVE: Artificial intelligence (AI) detects heart disease from images of electrocardiograms (ECGs). However, traditional supervised learning is limited by the need for large amounts of labeled data. We report the development of Biometric Contrastive Learning (BCL), a self-supervised pretraining approach for label-efficient deep learning on ECG images. MATERIALS AND METHODS: Using pairs of ECGs from 78 288 individuals from Yale (2000-2015), we trained a convolutional neural network to identify temporally separated ECG pairs that varied in layouts from the same patient. We fine-tuned BCL-pretrained models to detect atrial fibrillation (AF), gender, and LVEF < 40%, using ECGs from 2015 to 2021. We externally tested the models in cohorts from Germany and the United States. We compared BCL with ImageNet initialization and general-purpose self-supervised contrastive learning for images (simCLR). RESULTS: While with 100% labeled training data, BCL performed similarly to other approaches for detecting AF/Gender/LVEF < 40% with an AUROC of 0.98/0.90/0.90 in the held-out test sets, it consistently outperformed other methods with smaller proportions of labeled data, reaching equivalent performance at 50% of data. With 0.1% data, BCL achieved AUROC of 0.88/0.79/0.75, compared with 0.51/0.52/0.60 (ImageNet) and 0.61/0.53/0.49 (simCLR). In external validation, BCL outperformed other methods even at 100% labeled training data, with an AUROC of 0.88/0.88 for Gender and LVEF < 40% compared with 0.83/0.83 (ImageNet) and 0.84/0.83 (simCLR). DISCUSSION AND CONCLUSION: A pretraining strategy that leverages biometric signatures of different ECGs from the same patient enhances the efficiency of developing AI models for ECG images. This represents a major advance in detecting disorders from ECG images with limited labeled data.


Subject(s)
Atrial Fibrillation , Deep Learning , Humans , Artificial Intelligence , Electrocardiography , Biometry
6.
medRxiv ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38293023

ABSTRACT

Background: Artificial intelligence-enhanced electrocardiography (AI-ECG) can identify hypertrophic cardiomyopathy (HCM) on 12-lead ECGs and offers a novel way to monitor treatment response. While the surgical or percutaneous reduction of the interventricular septum (SRT) represented initial HCM therapies, mavacamten offers an oral alternative. Objective: To evaluate biological response to SRT and mavacamten. Methods: We applied an AI-ECG model for HCM detection to ECG images from patients who underwent SRT across three sites: Yale New Haven Health System (YNHHS), Cleveland Clinic Foundation (CCF), and Atlantic Health System (AHS); and to ECG images from patients receiving mavacamten at YNHHS. Results: A total of 70 patients underwent SRT at YNHHS, 100 at CCF, and 145 at AHS. At YNHHS, there was no significant change in the AI-ECG HCM score before versus after SRT (pre-SRT: median 0.55 [IQR 0.24-0.77] vs post-SRT: 0.59 [0.40-0.75]). The AI-ECG HCM scores also did not improve post SRT at CCF (0.61 [0.32-0.79] vs 0.69 [0.52-0.79]) and AHS (0.52 [0.35-0.69] vs 0.61 [0.49-0.70]). Among 36 YNHHS patients on mavacamten therapy, the median AI-ECG score before starting mavacamten was 0.41 (0.22-0.77), which decreased significantly to 0.28 (0.11-0.50, p <0.001 by Wilcoxon signed-rank test) at the end of a median follow-up period of 237 days. Conclusions: The lack of improvement in AI-based HCM score with SRT, in contrast to a significant decrease with mavacamten, suggests the potential role of AI-ECG for serial monitoring of pathophysiological improvement in HCM at the point-of-care using ECG images.

7.
Heart ; 110(6): 387-388, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-37940380
8.
medRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745527

ABSTRACT

Objective: Artificial intelligence (AI) detects heart disease from images of electrocardiograms (ECGs), however traditional supervised learning is limited by the need for large amounts of labeled data. We report the development of Biometric Contrastive Learning (BCL), a self-supervised pretraining approach for label-efficient deep learning on ECG images. Materials and Methods: Using pairs of ECGs from 78,288 individuals from Yale (2000-2015), we trained a convolutional neural network to identify temporally-separated ECG pairs that varied in layouts from the same patient. We fine-tuned BCL-pretrained models to detect atrial fibrillation (AF), gender, and LVEF<40%, using ECGs from 2015-2021. We externally tested the models in cohorts from Germany and the US. We compared BCL with random initialization and general-purpose self-supervised contrastive learning for images (simCLR). Results: While with 100% labeled training data, BCL performed similarly to other approaches for detecting AF/Gender/LVEF<40% with AUROC of 0.98/0.90/0.90 in the held-out test sets, it consistently outperformed other methods with smaller proportions of labeled data, reaching equivalent performance at 50% of data. With 0.1% data, BCL achieved AUROC of 0.88/0.79/0.75, compared with 0.51/0.52/0.60 (random) and 0.61/0.53/0.49 (simCLR). In external validation, BCL outperformed other methods even at 100% labeled training data, with AUROC of 0.88/0.88 for Gender and LVEF<40% compared with 0.83/0.83 (random) and 0.84/0.83 (simCLR). Discussion and Conclusion: A pretraining strategy that leverages biometric signatures of different ECGs from the same patient enhances the efficiency of developing AI models for ECG images. This represents a major advance in detecting disorders from ECG images with limited labeled data.

9.
NPJ Digit Med ; 6(1): 124, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37433874

ABSTRACT

Artificial intelligence (AI) can detect left ventricular systolic dysfunction (LVSD) from electrocardiograms (ECGs). Wearable devices could allow for broad AI-based screening but frequently obtain noisy ECGs. We report a novel strategy that automates the detection of hidden cardiovascular diseases, such as LVSD, adapted for noisy single-lead ECGs obtained on wearable and portable devices. We use 385,601 ECGs for development of a standard and noise-adapted model. For the noise-adapted model, ECGs are augmented during training with random gaussian noise within four distinct frequency ranges, each emulating real-world noise sources. Both models perform comparably on standard ECGs with an AUROC of 0.90. The noise-adapted model performs significantly better on the same test set augmented with four distinct real-world noise recordings at multiple signal-to-noise ratios (SNRs), including noise isolated from a portable device ECG. The standard and noise-adapted models have an AUROC of 0.72 and 0.87, respectively, when evaluated on ECGs augmented with portable ECG device noise at an SNR of 0.5. This approach represents a novel strategy for the development of wearable-adapted tools from clinical ECG repositories.

10.
Circulation ; 148(9): 765-777, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37489538

ABSTRACT

BACKGROUND: Left ventricular (LV) systolic dysfunction is associated with a >8-fold increased risk of heart failure and a 2-fold risk of premature death. The use of ECG signals in screening for LV systolic dysfunction is limited by their availability to clinicians. We developed a novel deep learning-based approach that can use ECG images for the screening of LV systolic dysfunction. METHODS: Using 12-lead ECGs plotted in multiple different formats, and corresponding echocardiographic data recorded within 15 days from the Yale New Haven Hospital between 2015 and 2021, we developed a convolutional neural network algorithm to detect an LV ejection fraction <40%. The model was validated within clinical settings at Yale New Haven Hospital and externally on ECG images from Cedars Sinai Medical Center in Los Angeles, CA; Lake Regional Hospital in Osage Beach, MO; Memorial Hermann Southeast Hospital in Houston, TX; and Methodist Cardiology Clinic of San Antonio, TX. In addition, it was validated in the prospective Brazilian Longitudinal Study of Adult Health. Gradient-weighted class activation mapping was used to localize class-discriminating signals on ECG images. RESULTS: Overall, 385 601 ECGs with paired echocardiograms were used for model development. The model demonstrated high discrimination across various ECG image formats and calibrations in internal validation (area under receiving operation characteristics [AUROCs], 0.91; area under precision-recall curve [AUPRC], 0.55); and external sets of ECG images from Cedars Sinai (AUROC, 0.90 and AUPRC, 0.53), outpatient Yale New Haven Hospital clinics (AUROC, 0.94 and AUPRC, 0.77), Lake Regional Hospital (AUROC, 0.90 and AUPRC, 0.88), Memorial Hermann Southeast Hospital (AUROC, 0.91 and AUPRC 0.88), Methodist Cardiology Clinic (AUROC, 0.90 and AUPRC, 0.74), and Brazilian Longitudinal Study of Adult Health cohort (AUROC, 0.95 and AUPRC, 0.45). An ECG suggestive of LV systolic dysfunction portended >27-fold higher odds of LV systolic dysfunction on transthoracic echocardiogram (odds ratio, 27.5 [95% CI, 22.3-33.9] in the held-out set). Class-discriminative patterns localized to the anterior and anteroseptal leads (V2 and V3), corresponding to the left ventricle regardless of the ECG layout. A positive ECG screen in individuals with an LV ejection fraction ≥40% at the time of initial assessment was associated with a 3.9-fold increased risk of developing incident LV systolic dysfunction in the future (hazard ratio, 3.9 [95% CI, 3.3-4.7]; median follow-up, 3.2 years). CONCLUSIONS: We developed and externally validated a deep learning model that identifies LV systolic dysfunction from ECG images. This approach represents an automated and accessible screening strategy for LV systolic dysfunction, particularly in low-resource settings.


Subject(s)
Electrocardiography , Ventricular Dysfunction, Left , Adult , Humans , Prospective Studies , Longitudinal Studies , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Function, Left/physiology
11.
medRxiv ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38234746

ABSTRACT

Background: Hypertrophic cardiomyopathy (HCM) affects 1 in every 200 individuals and is the leading cause of sudden cardiac death in young adults. HCM can be identified using an electrocardiogram (ECG) raw voltage data and deep learning approaches, but their point-of-care application is limited by the inaccessibility of these signal data. We developed a deep learning-based approach that overcomes this limitation and detects HCM from images of 12-lead ECGs across layouts. Methods: We identified ECGs from patients with HCM features present on cardiac magnetic resonance imaging (CMR) or those within 30 days of an echocardiogram documenting thickened interventricular septum (end-diastolic interventricular septum thickness > 15mm). Patients with CMR-confirmed HCM were considered as cases during the final model evaluation. The model was validated within clinical settings at YNHH and externally on ECG images from the prospective, population-based UK Biobank cohort. We localized class-discriminating signals in ECG images using gradient-weighted class activation mapping. Results: Overall, 124,553 ECGs from 66,987 individuals (HCM cases and controls) were used for model development. The model demonstrated high discrimination for HCM across various ECG image formats and calibrations in internal validation (area under receiving operation characteristics [AUROC] 0.96) and external sets of ECG images from UK Biobank (AUROC 0.94). A positive screen for HCM was associated with a 100-fold higher odds of CMR-confirmed HCM (OR 102.4, 95% Confidence Interval, 57.4 - 182.6) in the held-out set. Class-discriminative patterns localized to the anterior and lateral leads (V4-V5). Conclusions: We developed and externally validated a deep learning model that identifies HCM from ECG images with excellent discrimination. This approach represents an automated, efficient, and accessible screening strategy for HCM.

12.
Am J Prev Cardiol ; 11: 100370, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35968531

ABSTRACT

Background: Cardioprotective antihyperglycemic agents, SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1RA), improve outcomes of patients with type 2 diabetes, but adoption has been limited. Differences across individuals have been noted but area-level variation is unknown. Objectives: Given healthcare access and sociodemographic differences, we evaluated whether SGLT2i and GLP-1RA utilization varies across US counties. Methods: We linked 2019 Medicare Part D national prescription data with county-level demographic measures from the Agency for Health Quality and Research. We compared the number of beneficiaries receiving prescriptions for any cardioprotective antihyperglycemic to the number receiving metformin prescriptions across US counties. In multivariable linear regression with SGLT2i-to-metformin and GLP1RA-to-metformin prescriptions as outcomes, we evaluated county factors associated with use of cardioprotective agents while adjusting for sociodemographic measures, region, and cardiometabolic risk factor prevalence. Results: In 3066 US counties, there were a median 2,416 (IQR, 1681-3190) metformin-receiving beneficiaries per 100,000 population. A median 6.2% of beneficiaries receiving metformin received SGLT2i therapy, varying across counties (IQR, 3.4%-9.2%). A median 9.4% (IQR, 5.0%-13.0%) of beneficiaries receiving metformin received GLP-1RA. In adjusted analyses, higher percentage of Black population was associated with lower use at the county level of people on SGLT2i or GLP-1RA relative to metformin (a SD higher proportion of Black individuals with 0.4% [95% CI, -0.6% to -0.1%] and 0.5% [-0.8% to -0.2%] lower SGLT2i and GLP-1RA prescribing relative to metformin, respectively; P < 0.01). A higher median age of county residents, rural location, and lower prevalence of diabetes were associated with lower SGLT2i prescribing. Similarly, more advanced age of county residents, rural location, proportion of Hispanic individuals, and household income and lower education levels were associated with lower GLP-1RA prescribing. Prescribing was higher in the Northeast and lower in the West as compared with the Midwest for both classes. Conclusion: There was large variation by county in cardioprotective antihyperglycemic prescribing, with a pattern of lower use in Black-predominant and rural counties, highlighting the critical need to investigate equity in uptake of novel therapeutic agents.

13.
NPJ Digit Med ; 5(1): 27, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35260762

ABSTRACT

Diagnosis codes are used to study SARS-CoV2 infections and COVID-19 hospitalizations in administrative and electronic health record (EHR) data. Using EHR data (April 2020-March 2021) at the Yale-New Haven Health System and the three hospital systems of the Mayo Clinic, computable phenotype definitions based on ICD-10 diagnosis of COVID-19 (U07.1) were evaluated against positive SARS-CoV-2 PCR or antigen tests. We included 69,423 patients at Yale and 75,748 at Mayo Clinic with either a diagnosis code or a positive SARS-CoV-2 test. The precision and recall of a COVID-19 diagnosis for a positive test were 68.8% and 83.3%, respectively, at Yale, with higher precision (95%) and lower recall (63.5%) at Mayo Clinic, varying between 59.2% in Rochester to 97.3% in Arizona. For hospitalizations with a principal COVID-19 diagnosis, 94.8% at Yale and 80.5% at Mayo Clinic had an associated positive laboratory test, with secondary diagnosis of COVID-19 identifying additional patients. These patients had a twofold higher inhospital mortality than based on principal diagnosis. Standardization of coding practices is needed before the use of diagnosis codes in clinical research and epidemiological surveillance of COVID-19.

14.
Nat Commun ; 13(1): 1583, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35332137

ABSTRACT

The application of artificial intelligence (AI) for automated diagnosis of electrocardiograms (ECGs) can improve care in remote settings but is limited by the reliance on infrequently available signal-based data. We report the development of a multilabel automated diagnosis model for electrocardiographic images, more suitable for broader use. A total of 2,228,236 12-lead ECGs signals from 811 municipalities in Brazil are transformed to ECG images in varying lead conformations to train a convolutional neural network (CNN) identifying 6 physician-defined clinical labels spanning rhythm and conduction disorders, and a hidden label for gender. The image-based model performs well on a distinct test set validated by at least two cardiologists (average AUROC 0.99, AUPRC 0.86), an external validation set of 21,785 ECGs from Germany (average AUROC 0.97, AUPRC 0.73), and printed ECGs, with performance superior to signal-based models, and learning clinically relevant cues based on Grad-CAM. The model allows the application of AI to ECGs across broad settings.


Subject(s)
Artificial Intelligence , Electrocardiography , Brazil , Electrocardiography/methods , Germany , Neural Networks, Computer
15.
Circ Cardiovasc Qual Outcomes ; 14(12): e008381, 2021 12.
Article in English | MEDLINE | ID: mdl-34779654

ABSTRACT

BACKGROUND: Evidence from large randomized clinical trials supports the benefit of SGLT2i (sodium-glucose cotransporter-2 inhibitors) to improve cardiovascular and kidney outcomes in patients with type 2 diabetes with or at high risk for atherosclerotic cardiovascular disease or chronic kidney disease. Considering this evidence, which has been expanding since the product label indication for empagliflozin to reduce risk of cardiovascular death in 2016, clinician-level variation in the prescription of SGLT2i among US Medicare beneficiaries was evaluated. METHODS: Antihyperglycemic medication prescribers were identified as those physicians and advanced practice providers prescribing metformin in Medicare part D prescriber data. In this cross-sectional study, the proportion prescribing SGLT2i was assessed overall and across specialties in 2018, with changes assessed from 2014 to 2018. SGLT2i use was compared with other second-line antihyperglycemic medication classes, sulfonylureas and DPP4is (dipeptidyl peptidase-4 inhibitors). RESULTS: Among 232 523 unique clinicians who prescribed metformin for Medicare beneficiaries in 2018 (diabetes-treating clinicians), 45 255 (19.5%) prescribed SGLT2i. There was substantial variation across specialties-from 72% of endocrinologists to 14% of cardiologists who prescribed metformin also prescribed SGLT2i. Between 2014 and 2018, the number prescribing SGLT2i increased 5-fold from 9048 in 2014 to 45 255 in 2018. Among clinicians who prescribed both sulfonylureas and SGLT2i in 2018, SGLT2i was prescribed to a median 33 beneficiaries for every 100 prescribed sulfonylureas (interquartile range, 18-67). SGLT2i use relative to sulfonylureas increased from 19 (interquartile range, 11-34) per 100 in 2014 to 33 (interquartile range, 18-67) per 100 in 2018 (Ptrend<0.001). CONCLUSIONS: Eighty percent of clinicians prescribing metformin to Medicare beneficiaries did not prescribe SGLT2i in 2018. Moreover, sulfonylureas prescriptions were 3 times more frequent than those of SGLT2is, although a pattern of increasing uptake may portend future trends. These findings highlight a baseline opportunity to improve care and outcomes for patients with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Glucose , Humans , Hypoglycemic Agents/therapeutic use , Medicare , Sodium , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , United States/epidemiology
16.
medRxiv ; 2021 May 13.
Article in English | MEDLINE | ID: mdl-34013299

ABSTRACT

OBJECTIVE: Real-world data have been critical for rapid-knowledge generation throughout the COVID-19 pandemic. To ensure high-quality results are delivered to guide clinical decision making and the public health response, as well as characterize the response to interventions, it is essential to establish the accuracy of COVID-19 case definitions derived from administrative data to identify infections and hospitalizations. METHODS: Electronic Health Record (EHR) data were obtained from the clinical data warehouse of the Yale New Haven Health System (Yale, primary site) and 3 hospital systems of the Mayo Clinic (validation site). Detailed characteristics on demographics, diagnoses, and laboratory results were obtained for all patients with either a positive SARS-CoV-2 PCR or antigen test or ICD-10 diagnosis of COVID-19 (U07.1) between April 1, 2020 and March 1, 2021. Various computable phenotype definitions were evaluated for their accuracy to identify SARS-CoV-2 infection and COVID-19 hospitalizations. RESULTS: Of the 69,423 individuals with either a diagnosis code or a laboratory diagnosis of a SARS-CoV-2 infection at Yale, 61,023 had a principal or a secondary diagnosis code for COVID-19 and 50,355 had a positive SARS-CoV-2 test. Among those with a positive laboratory test, 38,506 (76.5%) and 3449 (6.8%) had a principal and secondary diagnosis code of COVID-19, respectively, while 8400 (16.7%) had no COVID-19 diagnosis. Moreover, of the 61,023 patients with a COVID-19 diagnosis code, 19,068 (31.2%) did not have a positive laboratory test for SARS-CoV-2 in the EHR. Of the 20 cases randomly sampled from this latter group for manual review, all had a COVID-19 diagnosis code related to asymptomatic testing with negative subsequent test results. The positive predictive value (precision) and sensitivity (recall) of a COVID-19 diagnosis in the medical record for a documented positive SARS-CoV-2 test were 68.8% and 83.3%, respectively. Among 5,109 patients who were hospitalized with a principal diagnosis of COVID-19, 4843 (94.8%) had a positive SARS-CoV-2 test within the 2 weeks preceding hospital admission or during hospitalization. In addition, 789 hospitalizations had a secondary diagnosis of COVID-19, of which 446 (56.5%) had a principal diagnosis consistent with severe clinical manifestation of COVID-19 (e.g., sepsis or respiratory failure). Compared with the cohort that had a principal diagnosis of COVID-19, those with a secondary diagnosis had a more than 2-fold higher in-hospital mortality rate (13.2% vs 28.0%, P<0.001). In the validation sample at Mayo Clinic, diagnosis codes more consistently identified SARS-CoV-2 infection (precision of 95%) but had lower recall (63.5%) with substantial variation across the 3 Mayo Clinic sites. Similar to Yale, diagnosis codes consistently identified COVID-19 hospitalizations at Mayo, with hospitalizations defined by secondary diagnosis code with 2-fold higher in-hospital mortality compared to those with a primary diagnosis of COVID-19. CONCLUSIONS: COVID-19 diagnosis codes misclassified the SARS-CoV-2 infection status of many people, with implications for clinical research and epidemiological surveillance. Moreover, the codes had different performance across two academic health systems and identified groups with different risks of mortality. Real-world data from the EHR can be used to in conjunction with diagnosis codes to improve the identification of people infected with SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...