Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Vet Sci ; 8(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34822635

ABSTRACT

Due to its easy preparation and that it is well tolerated, the use of autologous platelet-rich plasma (PRP) has become increasingly popular in regenerative medicine. However, there are still no clear guidelines on how it should be classified or whether the individual canine patient's clinical status can influence its quality. OBJECTIVE: This study aims to show if the weight, age, sex, neutered status or breed of canine patients have any correlation with the composition of PRP. DESIGN: A blinded count of the platelets and white blood cells (WBC) was performed from 111 samples from 92 client owned dogs undergoing treatment for degenerative joint disease (DJD). The results were analysed using Pearson correlation test, ANOVA test or Student T-test. RESULTS: There is a positive correlation between the number of platelets and WBC in canine patients of different breeds, but there was no significant difference on the platelet number and WBC number among the different breeds. The weight of the patient is also directly correlated to the platelet number (p = 0.003) but not WBC number. WBC number was negatively correlated to the weight of the patient. The sex and age of the patient did not affect platelets and WBC number, although WBC number is increased in non-neutered male population (p = 0.003). However, it would be interesting to investigate whether the growth factors released from the platelet granules are affected by patient variables in a canine population. CONCLUSIONS: Our results show that it is possible to obtain good quality autologous PRP, irrespective of age, sex, neutered status or weight of the patient, for PRP regenerative therapy.

2.
Bone Joint Res ; 10(10): 650-658, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34628940

ABSTRACT

AIMS: This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients. METHODS: With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using flow cytometry and tri-lineage differentiation. The impact and degree of osteoarthritis (OA) was assessed using the Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and diagnostic imaging. Overall, 28 joints (25 dogs) were injected with autologous AdMSCs and PRP. The patients were followed up at two, four, eight, 12, and 24 weeks. Data were analyzed using two related-samples Wilcoxon signed-rank or Mann-Whitney U tests with statistical significance set at p < 0.05. RESULTS: AdMSCs demonstrated stem cell-like characteristics. LOAD scores were significantly lower at week 4 compared with preinjection (p = 0.021). The mCOAST improved significantly after three months (p = 0.001) and six months (p = 0.001). Asymmmetry indices decreased from four weeks post-injection and remained significantly lower at six months (p = 0.025). CONCLUSION: These improvements in quality of life, reduction in pain on examination, and improved symmetry in dogs injected with AdMSCs and PRP support the effectiveness of this combined treatment for symptom modification in canine OA for six months. Cite this article: Bone Joint Res 2021;10(10):650-658.

3.
Bone Joint Res ; 10(10): 659-667, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34634923

ABSTRACT

AIMS: A growing number of fractures progress to delayed or nonunion, causing significant morbidity and socioeconomic impact. Localized delivery of stem cells and subcutaneous parathyroid hormone (PTH) has been shown individually to accelerate bony regeneration. This study aimed to combine the therapies with the aim of upregulating fracture healing. METHODS: A 1.5 mm femoral osteotomy (delayed union model) was created in 48 female juvenile Wistar rats, aged six to nine months, and stabilized using an external fixator. At day 0, animals were treated with intrafracture injections of 1 × 106 cells/kg bone marrow mesenchymal stem cells (MSCs) suspended in fibrin, daily subcutaneous injections of high (100 µg/kg) or low (25 µg/kg) dose PTH 1-34, or a combination of PTH and MSCs. A group with an empty gap served as a control. Five weeks post-surgery, the femur was excised for radiological, histomorphometric, micro-CT, and mechanical analysis. RESULTS: Combination therapy treatment led to increased callus formation compared to controls. In the high-dose combination group there was significantly greater mineralized tissue volume and trabecular parameters compared to controls (p = 0.039). This translated to significantly improved stiffness (and ultimate load to failure (p = 0.049). The high-dose combination therapy group had the most significant improvement in mean modified Radiographic Union Score for Tibia fractures (RUST) compared to controls (13.8 (SD 1.3) vs 5.8 (SD 0.5)). All groups demonstrated significant increases in the radiological scores - RUST and Allen score - histologically compared to controls. CONCLUSION: We demonstrate the beneficial effect of localized MSC injections on fracture healing combined with low- or high-dose teriparatide, with efficacy dependent on PTH dose. Cite this article: Bone Joint Res 2021;10(10):659-667.

4.
Vet Sci ; 8(2)2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33503997

ABSTRACT

BACKGROUND: Adipose tissue has recently gained attention as a source of mesenchymal stem cells (AdMSCs) for applications in treating degenerative joint disease in veterinary patients. This study aimed to quantify the stromal vascular fractions (SVFs) and colony forming units (CFU) of AdMSCs from the falciform and flank regions and compare dogs of different ages and weights. METHODS: Fat tissue was harvested from the flank (21 dogs) and falciform regions (17 dogs). The fat tissue was enzymatically digested and the number of nucleated cells in the SVF was counted. The SVF was cultured in vitro and the cell growth was assessed by counting the CFU per gram of fat and the aspect ratio of the cells. CONCLUSIONS: There was no significant difference in the number of nucleated cells in the SVF from the two sites. The CFU/g of fat from falciform was 378.9 ± 293 g and from flank was 486.8 ± 517 g, and this was also insignificant. Neither age nor weight of the patient had an impact on the SVF or CFU/g. No surgical complications were reported from either of the sites. Harvesting fat for stem cell therapy for intra-articular therapy of degenerative joint disease can be an easy and fast process when obtaining the fat either from the flank or the falciform region, and it is not age or weight dependent. The harvest site for clinical canine patients can be left to the surgeon's discretion and comfort.

5.
Knee Surg Sports Traumatol Arthrosc ; 29(11): 3678-3688, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33331973

ABSTRACT

PURPOSE: The effect of bone marrow mesenchymal stromal cells (BMSCs) and platelet-rich plasma (PRP) on tendon allograft maturation in a large animal anterior cruciate ligament (ACL) reconstruction model was reported for the first time. It was hypothesised that compared with non-augmented ACL reconstruction, BMSCs and PRP would enhance graft maturation after 12 weeks and this would be detected using magnetic resonance imaging (MRI). METHODS: Fifteen sheep underwent unilateral tendon allograft ACL reconstruction using aperture fixation and were randomised into three groups (n = 5). Group 1 received 10 million allogeneic BMSCs in 2 ml fibrin sealant; Group 2 received 12 ml PRP in a plasma clot injected into the graft and bone tunnels; and Group 3 (control) received no adjunctive treatment. At autopsy at 12 weeks, a graft maturation score was determined by the sum for graft integrity, synovial coverage and vascularisation, graft thickness and apparent tension, and synovial sealing at tunnel apertures. MRI analysis (n = 2 animals per group) of the signal-noise quotient (SNQ) and fibrous interzone (FIZ) was used to evaluate intra-articular graft maturation and tendon-bone healing, respectively. Spearman's rank correlation coefficient (r) of SNQ, autopsy graft maturation score and bone tunnel diameter were analysed. RESULTS: The BMSC group (p = 0.01) and PRP group (p = 0.03) had a significantly higher graft maturation score compared with the control group. The BMSC group scored significantly higher for synovial sealing at tunnel apertures (p = 0.03) compared with the control group. The graft maturation score at autopsy significantly correlated with the SNQ (r = - 0.83, p < 0.01). The tunnel diameter of the femoral tunnel at the aperture (r = 0.883, p = 0.03) and mid-portion (r = 0.941, p = 0.02) positively correlated with the SNQ. CONCLUSIONS: BMSCs and PRP significantly enhanced graft maturation, which indicates that orthobiologics can accelerate the biologic events in tendon allograft incorporation. Femoral tunnel expansion significantly correlated with inferior maturation of the intra-articular graft. The clinical relevance of this study is that BMSCs and PRP enhance allograft healing in a translational model, and biological modulation of graft healing can be evaluated non-invasively using MRI.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Mesenchymal Stem Cells , Platelet-Rich Plasma , Allografts , Animals , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Sheep , Tendons/surgery
6.
Bone Joint Res ; 9(12): 848-856, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33275031

ABSTRACT

AIMS: Periprosthetic joint infection (PJI) is a debilitating condition with a substantial socioeconomic burden. A novel autologous blood glue (ABG) has been developed, which can be prepared during surgery and sprayed onto prostheses at the time of implantation. The ABG can potentially provide an antimicrobial coating which will be effective in preventing PJI, not only by providing a physical barrier but also by eluting a well-known antibiotic. Hence, this study aimed to assess the antimicrobial effectiveness of ABG when impregnated with gentamicin and stem cells. METHODS: Gentamicin elution from the ABG matrix was analyzed and quantified in a time-dependent manner. The combined efficiency of gentamicin and ABG as an anti-biofilm coating was investigated on titanium disks. RESULTS: ABG-gentamicin was bactericidal from 10 µg/ml and could release bactericidal concentrations over seven days, preventing biofilm formation. A concentration of 75 µg/ml of gentamicin in ABG showed the highest bactericidal effect up to day 7. On titanium disks, a significant bacterial reduction on ABG-gentamicin coated disks was observed when compared to both uncoated (mean 2-log reduction) and ABG-coated (mean 3-log reduction) disks, at days 3 and 7. ABG alone exhibited no antimicrobial or anti-biofilm properties. However, a concentration of 75 µg/ml gentamicin in ABG sustains release over seven days and significantly reduced biofilm formation. Its use as an implant coating in patients with a high risk of infection may prevent bacterial adhesion perioperatively and in the early postoperative period. CONCLUSION: ABG's use as a carrier for stem cells was effective, as it supported cell growth. It has the potential to co-deliver compatible cells, drugs, and growth factors. However, ABG-gentamicin's potential needs to be further justified using in vivo studies. Cite this article: Bone Joint Res 2020;9(12):848-856.

7.
Bone Joint Res ; 9(7): 402-411, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32864111

ABSTRACT

AIMS: For cementless implants, stability is initially attained by an interference fit into the bone and osteo-integration may be encouraged by coating the implant with bioactive substances. Blood based autologous glue provides an easy, cost-effective way of obtaining high concentrations of growth factors for tissue healing and regeneration with the intention of spraying it onto the implant surface during surgery. The aim of this study was to incorporate nucleated cells from autologous bone marrow (BM) aspirate into gels made from the patient's own blood, and to investigate the effects of incorporating three different concentrations of platelet rich plasma (PRP) on the proliferation and viability of the cells in the gel. METHODS: The autologous blood glue (ABG) that constituted 1.25, 2.5, and 5 times concentration PRP were made with and without equal volumes of BM nucleated cells. Proliferation, morphology, and viability of the cells in the glue was measured at days 7 and 14 and compared to cells seeded in fibrin glue. RESULTS: Overall, 2.5 times concentration of PRP in ABG was capable of supporting the maximum growth of cells isolated from the BM aspirate and maintain their characteristics. Irrespective of PRP concentration, cells in ABG had statistically significantly higher viability compared to cells in fibrin glue. CONCLUSION: In vitro this novel autologous gel is more capable of supporting the growth of cells in its structure for up to 14 days, compared to commercially available fibrin-based sealants, and this difference was statistically significant.Cite this article: Bone Joint Res 2020;9(7):402-411.

8.
J Tissue Eng Regen Med ; 14(10): 1378-1383, 2020 10.
Article in English | MEDLINE | ID: mdl-32652850

ABSTRACT

The aim of this study is to describe the treatment of an infected segmental bone defect in a cat using a novel, custom-designed titanium implant seeded with adipose-derived stem cells (AdMSCs) to facilitate osseous ingrowth and preserve limb function. Large bone defects occur secondary to trauma, infection, or neoplasia and often result in amputation. We established a novel autologous AdMSC-impregnated trabecular metal spacer made using 3D printing, to bridge the distal tibia and metatarsal bones in the left pelvic limb of a cat that had previously undergone right pelvic limb amputation. Six months postoperatively, there was radiographic evidence of bone growth and implant integration. A titanium spacer seeded with AdMSCs successfully encouraged bone ingrowth in a large defect site and successfully preserved limb function. However, further studies are needed to justify the use of differentiated stem cell impregnated mesh as a framework to bridge large bone defects.


Subject(s)
Bone and Bones/pathology , Prostheses and Implants/veterinary , Stem Cell Transplantation , Stem Cells/cytology , Tarsus, Animal/pathology , Animals , Bone and Bones/diagnostic imaging , Cats , Cells, Cultured , Follow-Up Studies , Male , Tarsus, Animal/diagnostic imaging , Tarsus, Animal/surgery , Tomography, X-Ray Computed
9.
ACS Omega ; 4(22): 19664-19675, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31788597

ABSTRACT

PMMA-based cements are the most used bone cements in vertebroplasty and total hip arthroplasty. However, they present several drawbacks, including susceptibility to bacterial infection, monomer leakage toxicity, and high polymerization temperature, which can all lead to damage to the surrounding tissues and their failure. In the present study, silver nanowires (AgNWs) have been introduced to bestow antibacterial properties; chitosan (CS) to promote porosity and to reduce the polymerization temperature, without negatively affecting the mechanical performance; and methacryloyl chitosan (CSMCC) to promote cross-linking with methyl methacrylate (MMA) and reduce the quantity of monomer required for polymerization. Novel PMMA cements were formulated containing AgNWs (0 and 1% w/w) and CS or CSMCC at various concentrations (0, 10, 20, and 30% w/w), testing two different ratios of powder and MMA (P/L). Mechanical, thermal, antibacterial, and cytotoxic properties of the resulting composite cements were tested. Cements with concentrations of CS > 10% presented a significantly reduced polymerization temperature. The mechanical performances were affected for concentrations > 20% with a P/L concentration equal to 2:1. Concentrations of AgNWs as low as 1% w/w conferred antimicrobial activity against S. aureus, whereas biofilm formation on the surface of the cements was increased when CS was included in the preparation. The combination of CS and AgNWs allowed a higher concentration of Ag+ to be released over time with enhanced antimicrobial activity. Inclusion of AgNWs did not affect cell viability on the scaffolds. In conclusion, a combination of CS and AgNWs may be beneficial for reducing both polymerization temperature and biofilm formation, without significantly affecting mesenchymal stem cell proliferation on the scaffolds. No advantages have been noticed as a result of the reducing P/L ratio or using CSMCC instead of CS.

10.
Bone Joint Res ; 8(8): 397-404, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31537997

ABSTRACT

OBJECTIVES: Mesenchymal stem cells (MSCs) are of growing interest in terms of bone regeneration. Most preclinical trials utilize bone-marrow-derived mesenchymal stem cells (bMSCs), although this is not without isolation and expansion difficulties. The aim of this study was: to compare the characteristics of bMSCs and adipose-derived mesenchymal stem cells (AdMSCs) from juvenile, adult, and ovarectomized (OVX) rats; and to assess the effect of human parathyroid hormone (hPTH) 1-34 on their osteogenic potential and migration to stromal cell-derived factor-1 (SDF-1). METHODS: Cells were isolated from the adipose and bone marrow of juvenile, adult, and previously OVX Wistar rats, and were characterized with flow cytometry, proliferation assays, osteogenic and adipogenic differentiation, and migration to SDF-1. Experiments were repeated with and without intermittent hPTH 1-34. RESULTS: Juvenile and adult MSCs demonstrated significantly increased osteogenic and adipogenic differentiation and superior migration towards SDF-1 compared with OVX groups; this was the case for AdMSCs and bMSCs equally. Parathyroid hormone (PTH) increased parameters of osteogenic differentiation and migration to SDF-1. This was significant for all cell types, although it had the most significant effect on cells derived from OVX animals. bMSCs from all groups showed increased mineralization and migration to SDF-1 compared with AdMSCs. CONCLUSION: Juvenile MSCs showed significantly greater migration to SDF-1 and significantly greater osteogenic and adipogenic differentiation compared with cells from osteopenic rats; this was true for bMSCs and AdMSCs. The addition of PTH increased these characteristics, with the most significant effect on cells derived from OVX animals, further illustrating possible clinical application of both PTH and MSCs in bone regenerative therapies.Cite this article:L. Osagie-Clouard, A. Sanghani-Kerai, M. Coathup, R. Meeson, T. Briggs, G. Blunn. The influence of parathyroid hormone 1-34 on the osteogenic characteristics of adipose- and bone-marrow-derived mesenchymal stem cells from juvenile and ovarectomized rats. Bone Joint Res 2019;8:397-404. DOI: 10.1302/2046-3758.88.BJR-2019-0018.R1.

11.
J Mech Behav Biomed Mater ; 99: 161-168, 2019 11.
Article in English | MEDLINE | ID: mdl-31357063

ABSTRACT

Increasingly, the rat femoral fracture model is being used for preclinical investigations of fracture healing, however, the effect of gap size and its influence on mechanobiology is not well understood. We aimed to evaluate the influence of osteotomy gap on osteotomy healing between the previously published extremes of guaranteed union (0.5 mm) and non-union (3 mm) using this model. A femoral osteotomy in 12-14 week old female Wistar rats was stabilised with a micro fixator (titanium blocks, carbon fiber bars) with an osteotomy gap of 1.0 mm (n = 5), 1.5 mm (n = 7), 2.0 mm (n = 6). After five weeks, the left femur was retrieved. The osteotomy gap was scanned using X-ray microtomography and then histologically evaluated. The radiographic union rate (complete mineralised bone bridging across the osteotomy) was three times higher for the 1.0 mm than the 2.0 mm gap. The 1.0 mm gap had the largest callus (0.069µm3) and bone volume (0.035µm3). Callus and bone volume were approximately 50% smaller within the 2.0 mm gap. Using cadaveric rat femurs stabilised with the external fixator, day 0 mechanical assessment of construct stiffness was calculated on materials testing machine displacement vs load output. The construct stiffness for the 1.0, 1.5 and 2.0 mm gaps was 32.6 ±â€¯5.4, 32.5 ±â€¯2.4, and 32.4 ±â€¯8.3 N/mm (p = 0.779). Interfragmentary strain (IFS) was calculated using the change in osteotomy gap displacement as measured using microstrain miniature differential reluctance transducer spanning the osteotomy gap. Increasing the gap size significantly reduced the IFS (p = 0.013). The mean 'day 0' IFS for the 1.0, 1.5 and 2.0 mm gaps were 11.2 ±â€¯1.3, 8.4 ±â€¯1.5 and 6.1 ±â€¯1.2% respectively. A 1.5 mm gap resulted in a delayed fracture healing by 5 weeks and may represent a useful test environment for fracture healing therapy. Increasing gap size did not affect construct stiffness, but did reduce the 'day 0' IFS, with a doubling of non-union and halving of bone volume measured between 1.0 and 2.0 mm gaps.


Subject(s)
External Fixators , Femur/pathology , Fracture Fixation/instrumentation , Fracture Healing , Osteotomy/instrumentation , Animals , Biomechanical Phenomena , Female , Femoral Fractures/surgery , Fracture Fixation/methods , Osteotomy/methods , Rats , Rats, Wistar , X-Ray Microtomography
12.
Curr Stem Cell Res Ther ; 13(5): 369-377, 2018.
Article in English | MEDLINE | ID: mdl-29637866

ABSTRACT

With the ageing population, musculoskeletal conditions are becoming more inherent. Delayed union is defined as a slower than normal fracture healing response, with no healing after 4 to 6 months; however, the union is anticipated given sufficient time. In the context of delayed/non-union, fragility fractures in osteoporotic populations carry significant patient morbidity and socioeconomic costs. Multiple mechanisms hinder fracture healing in osteoporotic patients, imbalanced bone remodelling leads to impaired bone microarchitecture due to reduced osteoblast number and activity and as such, callus formation is diminished. Since stem cells can self-renew and differentiate into various tissue lineages, they are becoming very popular in tissue regeneration in musculoskeletal conditions. In this review, we discuss the role of stem cells in physiological fracture healing and their potential therapeutic use following a fracture. We explore the potential of stem cells, the release of chemokines and cytokines to reduce fracture risk in osteoporosis.


Subject(s)
Fracture Healing/physiology , Osteoporosis , Osteoporotic Fractures/therapy , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Bone Regeneration , Cell Differentiation , Cell Movement , Humans , Osteoporosis/pathology , Osteoporosis/physiopathology , Osteoporotic Fractures/prevention & control , Stem Cells/cytology
13.
Am J Sports Med ; 46(1): 98-108, 2018 01.
Article in English | MEDLINE | ID: mdl-28949253

ABSTRACT

BACKGROUND: The success of rotator cuff repair is primarily dependent on tendon-bone healing. Failure is common because weak scar tissue replaces the native enthesis, rendering it prone to reruptures. A demineralized bone matrix (DBM) consists of a network of collagen fibers that provide a sustained release of growth factors such as bone morphogenetic proteins. Previous studies have demonstrated that it can regenerate a fibrocartilaginous enthesis. HYPOTHESIS: The use of a DBM and mesenchymal stem cells (MSCs) at the healing enthesis will result in a higher bone mineral density at the tendon insertion and will enhance the regeneration of a morphologically superior enthesis when compared with an acellular human dermal matrix. STUDY DESIGN: Controlled laboratory study. METHODS: Eighteen female Wistar rats underwent unilateral detachment of the supraspinatus tendon. Three weeks later, tendon repair was carried out in animals randomized into 3 groups: group 1 received augmentation of the repair with a cortical allogenic DBM (n = 6); group 2 received augmentation with a nonmeshed, ultrathick, acellular human dermal matrix (n = 6); and group 3 underwent tendon-bone repair without a scaffold (n = 6). All animals received 1 × 106 MSCs delivered in fibrin glue to the repair site. Specimens were retrieved at 6 weeks postoperatively for histological analysis and the evaluation of bone mineral density. RESULTS: All groups demonstrated closure of the tendon-bone gap with a fibrocartilaginous enthesis. Although there were no significant differences in the enthesis maturation and modified Movin scores, repair augmented with a dermal matrix + MSCs exhibited a disorganized enthesis, abnormal collagen fiber arrangement, and greater cellularity compared with other MSC groups. Only repairs augmented with a DBM + MSCs reached a bone mineral density not significantly lower than nonoperated controls. CONCLUSION: A DBM enhanced with MSCs can augment rotator cuff healing at 6 weeks and restore bone mineral density at the enthesis to its preinjury levels. CLINICAL RELEVANCE: Biological augmentation of rotator cuff repair with a DBM and MSCs may reduce the incidence of retears, although further studies are required to determine its effectiveness.


Subject(s)
Acellular Dermis , Cortical Bone/transplantation , Mesenchymal Stem Cell Transplantation , Rotator Cuff Injuries/surgery , Animals , Biocompatible Materials , Bone Density , Bone Marrow/pathology , Cicatrix , Female , Fibrin Tissue Adhesive , Fibrocartilage/growth & development , Humans , Random Allocation , Rats , Rats, Wistar , Rotator Cuff/surgery , Rotator Cuff Injuries/pathology , Tendons/pathology , Wound Healing
14.
Shoulder Elbow ; 9(3): 178-187, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28588658

ABSTRACT

BACKGROUND: To evaluate biological strategies that enhance tendon-bone healing in humans, it is imperative that suitable animal models accurately reproduce the pathological changes observed in the clinical setting following a tear. The purpose of the present study was to investigate rotator cuff degeneration in a rat, as well as assess the development of osteopenia at the enthesis following tendon detachment. METHODS: Eighteen female Wistar rats underwent unilateral detachment of the supraspinatus tendon. Specimens were retrieved at 4 weeks (n = 6), 6 weeks (n = 6) and 9 weeks (n = 6) postoperatively for histological analysis and peripheral quantitative computer tomography. RESULTS: Three weeks following tendon detachment, there was a significant increase in the modified Movin score, characterized by a loss of muscle mass, fatty infiltration, an increase in musculotendinous cellularity, loss of normal collagen fibre structure/arrangement, rounded tenocyte nuclei and an increase in the number of vascular bundles. This was accompanied by a reduction in bone mineral density at the tendon insertion site. After 3 weeks however, these changes were less prominent. CONCLUSIONS: The rotator cuff tendon-muscle-bone unit in a rat model 3 weeks after detachment of supraspinatus represents a valid model for investigating rotator cuff degeneration.

15.
J Shoulder Elbow Surg ; 26(4): 619-626, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28162888

ABSTRACT

BACKGROUND: The purpose of this study was to assess the effect of demineralized bone matrix (DBM) on rotator cuff tendon-bone healing. The hypothesis was that compared with a commercially available dermal matrix scaffold, DBM would result in a higher bone mineral density and regenerate a morphologically superior enthesis in a rat model of chronic rotator cuff degeneration. METHODS: Eighteen female Wistar rats underwent unilateral detachment of the supraspinatus tendon. Three weeks later, tendon repair was carried out in animals randomized into 3 groups: group 1 animals were repaired with DBM (n = 6); group 2 received augmentation with the dermal scaffold (n = 6); and group 3 (controls) underwent nonaugmented tendon-bone repair (n = 6). Specimens were retrieved at 6 weeks postoperatively for histologic analysis and evaluation of bone mineral density. RESULTS: No failures of tendon-bone healing were noted throughout the study. All groups demonstrated closure of the tendon-bone gap with a fibrocartilaginous interface. Dermal collagen specimens exhibited a disorganized structure with significantly more abnormal collagen fiber arrangement and cellularity than in the DBM-based repairs. Nonaugmented repairs exhibited a significantly higher bone mineral density than in DBM and the dermal collagen specimens and were not significantly different from control limbs that were not operated on. CONCLUSION: The application of DBM to a rat model of chronic rotator cuff degeneration did not improve the composition of the healing enthesis compared with nonaugmented controls and a commercially available scaffold. However, perhaps the most important finding of this study was that the control group demonstrated a similar outcome to augmented repairs.


Subject(s)
Bone Matrix , Rotator Cuff Injuries/therapy , Tissue Scaffolds , Wound Healing , Acellular Dermis , Animals , Biocompatible Materials , Bone Density , Chronic Disease , Cortical Bone , Female , Rats , Rats, Wistar , Rotator Cuff Injuries/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...