Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4132, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755165

ABSTRACT

The regulated release of chemical messengers is crucial for cell-to-cell communication; abnormalities in which impact coordinated human body function. During vesicular secretion, multiple SNARE complexes assemble at the release site, leading to fusion pore opening. How membrane fusion regulators act on heterogeneous SNARE populations to assemble fusion pores in a timely and synchronized manner, is unknown. Here, we demonstrate the role of SNARE chaperones Munc13-1 and Munc18-1 in rescuing individual nascent fusion pores from their diacylglycerol lipid-mediated inhibitory states. At the onset of membrane fusion, Munc13-1 clusters multiple SNARE complexes at the release site and synchronizes release events, while Munc18-1 stoichiometrically interacts with trans-SNARE complexes to enhance N- to C-terminal zippering. When both Munc proteins are present simultaneously, they differentially access dynamic trans-SNARE complexes to regulate pore properties. Overall, Munc proteins' direct action on fusion pore assembly indicates their role in controlling quantal size during vesicular secretion.


Subject(s)
Membrane Fusion , Munc18 Proteins , Nerve Tissue Proteins , SNARE Proteins , Munc18 Proteins/metabolism , Munc18 Proteins/genetics , SNARE Proteins/metabolism , SNARE Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Animals , Humans , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Rats
2.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38238088

ABSTRACT

The precise cell-to-cell communication relies on SNARE-catalyzed membrane fusion. Among ∼70 copies of synaptobrevin2 (syb2) in synaptic vesicles, only ∼3 copies are sufficient to facilitate the fusion process at the presynaptic terminal. It is unclear what dictates the number of SNARE complexes that constitute the fusion pore assembly. The structure-function relation of these dynamic pores is also unknown. Here, we demonstrate that syb2 monomers and dimers differentially engage in regulating the trans-SNARE assembly during membrane fusion. The differential recruitment of two syb2 structures at the membrane fusion site has consequences in regulating individual nascent fusion pore properties. We have identified a few syb2 transmembrane domain residues that control monomer/dimer conversion. Overall, our study indicates that syb2 monomers and dimers are differentially recruited at the release sites for regulating membrane fusion events.


Subject(s)
Membrane Fusion , SNARE Proteins , Membrane Fusion/physiology , SNARE Proteins/genetics , Synapses , Cell Communication , Presynaptic Terminals
3.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34413185

ABSTRACT

α-Synuclein (α-synFL) is central to the pathogenesis of Parkinson's disease (PD), in which its nonfunctional oligomers accumulate and result in abnormal neurotransmission. The normal physiological function of this intrinsically disordered protein is still unclear. Although several previous studies demonstrated α-synFL's role in various membrane fusion steps, they produced conflicting outcomes regarding vesicular secretion. Here, we assess α-synFL's role in directly regulating individual exocytotic release events. We studied the micromillisecond dynamics of single recombinant fusion pores, the crucial kinetic intermediate of membrane fusion that tightly regulates the vesicular secretion in different cell types. α-SynFL accessed v-SNARE within the trans-SNARE complex to form an inhibitory complex. This activity was dependent on negatively charged phospholipids and resulted in decreased open probability of individual pores. The number of trans-SNARE complexes influenced α-synFL's inhibitory action. Regulatory factors that arrest SNARE complexes in different assembly states differentially modulate α-synFL's ability to alter fusion pore dynamics. α-SynFL regulates pore properties in the presence of Munc13-1 and Munc18, which stimulate α-SNAP/NSF-resistant SNARE complex formation. In the presence of synaptotagmin1(syt1), α-synFL contributes with apo-syt1 to act as a membrane fusion clamp, whereas Ca2+•syt1 triggered α-synFL-resistant SNARE complex formation that rendered α-synFL inactive in modulating pore properties. This study reveals a key role of α-synFL in controlling vesicular secretion.


Subject(s)
Hemolysin Proteins/chemistry , SNARE Proteins/metabolism , alpha-Synuclein/metabolism , Lab-On-A-Chip Devices , Lipids/chemistry , Membranes, Artificial , SNARE Proteins/chemistry , alpha-Synuclein/chemistry
4.
Pathogens ; 8(4)2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31805671

ABSTRACT

Klebsiella pneumoniae (Kp), is a frequent cause of hospital and community-acquired infections and WHO had declared it as a "priority pathogen". Biofilm is a major virulence factor of Kp and yet the mechanism of strong biofilm formation in Kp is unclear. A key objective of the present study is to investigate the differences between strong and weak biofilms formed by clinical isolates of Kp on various catheters and in different media conditions and to identify constituents contributing to strong biofilm formation. Quantification of matrix components (extracellular DNA (eDNA), protein, exopolysaccharides (EPS), and bacterial cells), confocal laser scanning microscopy (CLSM), field emission gun scanning electron microscopy (FEG-SEM) and flow-cytometry analysis were performed to compare strong and weak biofilm matrix. Our results suggest increased biofilm formation on latex catheters compared to silicone and silicone-coated latex catheters. Higher amounts of eDNA, protein, EPS, and dead cells were observed in the strong biofilm of Kp. High adhesion capacity and cell death seem to play a major role in formation of strong Kp biofilms. The enhanced eDNA, EPS, and protein in the biofilm matrix appear as a consequence of increased cell death.

SELECTION OF CITATIONS
SEARCH DETAIL
...