Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 29(16): 2428-2436, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31133531

ABSTRACT

Treatment of hepatitis C virus (HCV) infection has been historically challenging due the high viral genetic complexity wherein there are eight distinct genotypes and at least 86 viral subtypes. While HCV NS3/4A protease inhibitors are an established treatment option for genotype 1 infection, limited coverage of genotypes 2 and/or 3 combined with serum alanine transaminase (ALT) elevations for some compounds has limited the broad utility of this therapeutic class. Our discovery efforts were focused on identifying an NS3/4A protease inhibitor with pan-genotypic antiviral activity, improved coverage of resistance associated substitutions, and a decreased risk of hepatotoxicity. Towards this goal, distinct interactions with the conserved catalytic triad of the NS3/4A protease were identified that improved genotype 3 antiviral activity. We further discovered that protein adduct formation strongly correlated with clinical ALT elevation for this therapeutic class. Improving metabolic stability and decreasing protein adduct formation through structural modifications ultimately resulted in voxilaprevir. Voxilaprevir, in combination with sofosbuvir and velpatasvir, has demonstrated pan-genotypic antiviral clinical activity. Furthermore, hepatotoxicity was not observed in Phase 3 clinical trials with voxilaprevir, consistent with our design strategy. Vosevi® (sofosbuvir, velpatasvir, and voxilaprevir) is now an approved pan-genotypic treatment option for the most difficult-to-cure individuals who have previously failed direct acting antiviral therapy.


Subject(s)
Antiviral Agents/pharmacology , Carbamates/chemistry , Drug Discovery , Hepacivirus/drug effects , Heterocyclic Compounds, 4 or More Rings/chemistry , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Protease Inhibitors/pharmacology , Sofosbuvir/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Aminoisobutyric Acids , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cyclopropanes , Dose-Response Relationship, Drug , Drug Combinations , Hepacivirus/genetics , Humans , Lactams, Macrocyclic , Leucine/analogs & derivatives , Macrocyclic Compounds/chemical synthesis , Microbial Sensitivity Tests , Molecular Structure , Proline/analogs & derivatives , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Quinoxalines , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
2.
J Med Chem ; 61(21): 9473-9499, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30074795

ABSTRACT

Cyclophilins are a family of peptidyl-prolyl isomerases that are implicated in a wide range of diseases including hepatitis C. Our aim was to discover through total synthesis an orally bioavailable, non-immunosuppressive cyclophilin (Cyp) inhibitor with potent anti-hepatitis C virus (HCV) activity that could serve as part of an all oral antiviral combination therapy. An initial lead 2 derived from the sanglifehrin A macrocycle was optimized using structure based design to produce a potent and orally bioavailable inhibitor 3. The macrocycle ring size was reduced by one atom, and an internal hydrogen bond drove improved permeability and drug-like properties. 3 demonstrates potent Cyp inhibition ( Kd = 5 nM), potent anti-HCV 2a activity (EC50 = 98 nM), and high oral bioavailability in rat (100%) and dog (55%). The synthetic accessibility and properties of 3 support its potential as an anti-HCV agent and for interrogating the role of Cyp inhibition in a variety of diseases.


Subject(s)
Cyclophilins/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Administration, Oral , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Biological Availability , Cell Line , Cyclophilins/chemistry , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Hepacivirus/drug effects , Lactones/administration & dosage , Lactones/chemistry , Lactones/pharmacokinetics , Lactones/pharmacology , Models, Molecular , Protein Conformation , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology
3.
Antimicrob Agents Chemother ; 60(3): 1264-73, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26666922

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections in infants and young children. In addition, RSV causes significant morbidity and mortality in hospitalized elderly and immunocompromised patients. Currently, only palivizumab, a monoclonal antibody against the RSV fusion (F) protein, and inhaled ribavirin are approved for the prophylactic and therapeutic treatment of RSV, respectively. Therefore, there is a clinical need for safe and effective therapeutic agents for RSV infections. GS-5806, discovered via chemical optimization of a hit from a high-throughput antiviral-screening campaign, selectively inhibits a diverse set of 75 RSV subtype A and B clinical isolates (mean 50% effective concentration [EC50] = 0.43 nM). The compound maintained potency in primary human airway epithelial cells and exhibited low cytotoxicity in human cell lines and primary cell cultures (selectivity > 23,000-fold). Time-of-addition and temperature shift studies demonstrated that GS-5806 does not block RSV attachment to cells but interferes with virus entry. Follow-up experiments showed potent inhibition of RSV F-mediated cell-to-cell fusion. RSV A and B variants resistant to GS-5806, due to mutations in F protein (RSV A, L138F or F140L/N517I, and RSV B, F488L or F488S), were isolated and showed cross-resistance to other RSV fusion inhibitors, such as VP-14637, but remained fully sensitive to palivizumab and ribavirin. In summary, GS-5806 is a potent and selective RSV fusion inhibitor with antiviral activity against a diverse set of RSV clinical isolates. The compound is currently under clinical investigation for the treatment of RSV infection in pediatric, immunocompromised, and elderly patients.


Subject(s)
Antiviral Agents/pharmacology , Pyrazoles/pharmacology , Respiratory Syncytial Virus, Human/drug effects , Sulfonamides/pharmacology , Bronchi/cytology , Bronchi/virology , Cell Fusion , Cell Line , Drug Evaluation, Preclinical/methods , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Humans , Indazoles , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus, Human/pathogenicity , Virus Internalization/drug effects
4.
J Med Chem ; 58(4): 1630-43, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25574686

ABSTRACT

GS-5806 is a novel, orally bioavailable RSV fusion inhibitor discovered following a lead optimization campaign on a screening hit. The oral absorption properties were optimized by converting to the pyrazolo[1,5-a]-pyrimidine heterocycle, while potency, metabolic, and physicochemical properties were optimized by introducing the para-chloro and aminopyrrolidine groups. A mean EC50 = 0.43 nM was found toward a panel of 75 RSV A and B clinical isolates and dose-dependent antiviral efficacy in the cotton rat model of RSV infection. Oral bioavailability in preclinical species ranged from 46 to 100%, with evidence of efficient penetration into lung tissue. In healthy human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a mean 4.2 log10 reduction in peak viral load and a significant reduction in disease severity compared to placebo. In conclusion, a potent, once daily, oral RSV fusion inhibitor with the potential to treat RSV infection in infants and adults is reported.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Pyrazoles/pharmacology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/drug effects , Sulfonamides/pharmacology , Virus Internalization/drug effects , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Dogs , Dose-Response Relationship, Drug , Humans , Indazoles , Macaca fascicularis , Microbial Sensitivity Tests , Molecular Structure , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Rats , Respiratory Syncytial Viruses/physiology , Structure-Activity Relationship , Sulfonamides/administration & dosage , Sulfonamides/chemistry
5.
J Med Chem ; 57(5): 1914-31, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24195700

ABSTRACT

In the past few years, there have been many advances in the efforts to cure patients with hepatitis C virus (HCV). The ultimate goal of these efforts is to develop a combination therapy consisting of only direct-antiviral agents (DAAs). In this paper, we discuss our efforts that led to the identification of a bicyclic template with potent activity against the NS5B polymerase, a critical enzyme on the life cycle of HCV. In continuation of our exploration to improve the stilbene series, the 3,5,6,8-tetrasubstituted quinoline core was identified as replacement of the stilbene moiety. 6-Methoxy-2(1H)-pyridone was identified among several heterocyclic headgroups to have the best potency. Solubility of the template was improved by replacing a planar aryl linker with a saturated pyrrolidine. Profiling of the most promising compounds led to the identification of quinoline 41 (RG7109), which was selected for advancement to clinical development.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Quinolines/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Dogs , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Hepacivirus/enzymology , Humans , Models, Molecular , Quinolines/chemistry , Quinolines/pharmacokinetics , Rats , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics
6.
J Med Chem ; 56(20): 8163-82, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24069953

ABSTRACT

Hepatitis C virus (HCV) is a major global public health problem. While the current standard of care, a direct-acting antiviral (DAA) protease inhibitor taken in combination with pegylated interferon and ribavirin, represents a major advancement in recent years, an unmet medical need still exists for treatment modalities that improve upon both efficacy and tolerability. Toward those ends, much effort has continued to focus on the discovery of new DAAs, with the ultimate goal to provide interferon-free combinations. The RNA-dependent RNA polymerase enzyme NS5B represents one such DAA therapeutic target for inhibition that has attracted much interest over the past decade. Herein, we report the discovery and optimization of a novel series of inhibitors of HCV NS5B, through the use of structure-based design applied to a fragment-derived starting point. Issues of potency, pharmacokinetics, and early safety were addressed in order to provide a clinical candidate in fluoropyridone 19.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Area Under Curve , Cell Line, Tumor , Dogs , Drug Discovery/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Hepacivirus/drug effects , Hepacivirus/enzymology , Hepacivirus/physiology , Hepatitis C/prevention & control , Hepatitis C/virology , Host-Pathogen Interactions/genetics , Humans , Models, Molecular , Molecular Targeted Therapy/methods , Protein Binding , Protein Structure, Tertiary , Pyridones/chemical synthesis , Pyridones/pharmacokinetics , Pyridones/pharmacology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Rats , Structure-Activity Relationship , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
7.
J Org Chem ; 70(1): 161-8, 2005 Jan 07.
Article in English | MEDLINE | ID: mdl-15624918

ABSTRACT

We present here a reassessment of our transition-metal free Suzuki-type coupling protocol. We believe that, although the reaction can be run without the need for addition of a metal catalyst, palladium contaminants down to a level of 50 ppb found in commercially available sodium carbonate are responsible for the generation of the biaryl rather than, as previously suggested, an alternative non-palladium-mediated pathway. We present a revised methodology for Suzuki couplings using ultralow palladium concentrations for use with aryl and vinyl boronic acids and discuss the effects of the purity of the boronic acid on the reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...