Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 253: 112885, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460431

ABSTRACT

The daily light/dark cycle affects animals' learning, memory, and cognition. Exposure to insufficient daylight illumination negatively impacts emotion and cognition, leading to seasonal affective disorder characterized by depression, anxiety, low motivation, and cognitive impairment in diurnal animals. However, how this affects memory, learning, and cognition in nocturnal rodents is largely unknown. Here, we studied the effect of daytime light illuminance on memory, learning, cognition, and expression of mRNA levels in the hippocampus, thalamus, and cortex, the higher-order learning centers. Two experiments were performed. In experiment one, rats were exposed to 12 L:12D (12 h light and 12 h dark) with a 10, 100, or 1000 lx daytime light illuminance. After 30 days, various behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, and passive avoidance test) were performed. In experiment 2, rats since birth were raised either under constant bright light (250 lx; LL) or a daily light-dark cycle (12 L:12D). After four months, behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, passive avoidance test, Morris water maze, and Y-maze tests) were performed. At the end of experiments, rats were sampled, and mRNA expression of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (Trk), microRNA132 (miR132), Neurogranin (Ng), Growth Associated Protein 43 (Gap-43), cAMP Response Element-Binding Protein (Crebp), Glycogen synthase kinase-3ß (Gsk3ß), and Tumour necrosis factor-α (Tnf-α) were measured in the hippocampus, cortex, and thalamus of individual rats. Our results show that exposure to bright daylight (100 and 1000 lx; experiment 1) or constant light (experiment 2) compromises memory, learning, and cognition. Suppressed expression levels of these mRNA were also observed in the hypothalamus, cortex, and thalamus. These results suggest that light affects differently to different groups of animals.


Subject(s)
Cognition , MicroRNAs , Rats , Animals , Anxiety/metabolism , Maze Learning/physiology , Photoperiod , RNA, Messenger/genetics
2.
Mol Biol Rep ; 51(1): 278, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319482

ABSTRACT

BACKGROUND: Stress is one of the prevalent factors influencing cognition. Several studies examined the effect of mild or chronic stress on cognition. However, most of these studies are limited to a few behavioral tests or the expression of selected RNA/proteins markers in a selected brain region. METHODS: This study examined the effect of restraint stress on learning, memory, cognition, and expression of transcripts in key learning centers. Male mice were divided into three groups (n = 6/group)-control group, stress group (adult stressed group; S), and F1 group (parental stressed group). Stress group mice were subjected to physical restraint stress for 2 h before light offset for 2 weeks. The F1 group comprised adult male mice born of stressed parents. All animals were subjected to different tests and were sacrificed at the end. Transcription levels of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (TrkB), Growth Associated Protein 43 (Gap-43), Neurogranin (Ng), cAMP Response Element-Binding Protein (Creb), Glycogen synthase kinase-3ß (Gsk3ß), Interleukine-1 (IL-1) and Tumour necrosis factor-α (Tnf-α) were studied. RESULTS: Results show that both adult and parental stress negatively affect learning, memory and cognition, as reflected by taking longer time to achieve the task or showing reduced exploratory behavior. Expression of Bdnf, TrkB, Gsk3ß and Ng was downregulated, while IL-1 and Tnf-α were upregulated in the brain's cortex, thalamus, and hippocampus region of stressed mice. These effects seem to be relatively less severe in the offspring of stressed parents. CONCLUSIONS: The findings suggest that physical restraint stress can alter learning, memory, cognition, and expression of transcripts in key learning centers of brain.


Subject(s)
Brain-Derived Neurotrophic Factor , Restraint, Physical , Male , Animals , Mice , Brain-Derived Neurotrophic Factor/genetics , Glycogen Synthase Kinase 3 beta , Tumor Necrosis Factor-alpha , Cognition , Brain , Interleukin-1 , Protein-Tyrosine Kinases
3.
Photochem Photobiol Sci ; 22(10): 2297-2314, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37337065

ABSTRACT

The rapid increase in urbanization is altering the natural composition of the day-night light ratio. The light/dark cycle regulates animal learning, memory, and mood swings. A study was conducted to examine the effect of different quantity and quality of light at night on the daily clock, learning, memory, cognition, and expression of transcripts in key learning centers. Treatment was similar for experiments one to three. Rats were exposed for 30 days to 12 h light and 12 h dark with a night light of 2 lx (dLAN group), 250 lx (LL), or without night light (LD). In experiment one, after 28 days, blood samples were collected and 2 days later, animals were exposed to constant darkness. In experiment two, after 30 days of treatment, animals were subjected to various tests involving learning, memory, and cognition. In experiment three, after 30 days of treatment, animals were sampled, and transcript levels of brain-derived neurotrophic factor, tyrosine kinase, Growth-Associated Protein 43, Neurogranin, microRNA-132, cAMP Response Element-Binding Protein, Glycogen synthase kinase-3ß, and Tumor necrosis factor α were measured in hippocampus, thalamus, and cortex tissues. In experiment four, animals were exposed to night light of 0.019 W/m2 but of either red (640 nm), green (540 nm), or blue (450 nm) wavelength for 30 days, and similar tests were performed as mentioned in experiment 2. While in experiment five, after 30 days of respective wavelength treatments, all animals were sampled for gene expression studies. Our results show that exposure to dLAN and LL affects the daily clock as reflected by altered melatonin secretion and locomotor activity, compromises the learning, memory, and cognitive ability, and alterations in the expression levels of transcripts in the hypothalamus, cortex, and thalamus. The effect is night light intensity dependent. Further, blue light at night has less drastic effects than green and red light. These results could be of the potential use of framing the policies for the use of light at night.


Subject(s)
Melatonin , MicroRNAs , Rats , Animals , Photoperiod , Brain , Cognition , Melatonin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...