Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Main subject
Publication year range
1.
Phys Rev Lett ; 130(21): 213601, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37295084

ABSTRACT

A quantum repeater node is presented based on trapped ions that act as single-photon emitters, quantum memories, and an elementary quantum processor. The node's ability to establish entanglement across two 25-km-long optical fibers independently, then to swap that entanglement efficiently to extend it over both fibers, is demonstrated. The resultant entanglement is established between telecom-wavelength photons at either end of the 50 km channel. Finally, the system improvements to allow for repeater-node chains to establish stored entanglement over 800 km at hertz rates are calculated, revealing a near-term path to distributed networks of entangled sensors, atomic clocks, and quantum processors.


Subject(s)
Photons , Ions
2.
Phys Rev Lett ; 130(5): 050803, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36800448

ABSTRACT

We report on an elementary quantum network of two atomic ions separated by 230 m. The ions are trapped in different buildings and connected with 520(2) m of optical fiber. At each network node, the electronic state of an ion is entangled with the polarization state of a single cavity photon; subsequent to interference of the photons at a beam splitter, photon detection heralds entanglement between the two ions. Fidelities of up to (88.0+2.2-4.7)% are achieved with respect to a maximally entangled Bell state, with a success probability of 4×10^{-5}. We analyze the routes to improve these metrics, paving the way for long-distance networks of entangled quantum processors.

3.
Nature ; 607(7920): 682-686, 2022 07.
Article in English | MEDLINE | ID: mdl-35896644

ABSTRACT

Cryptographic key exchange protocols traditionally rely on computational conjectures such as the hardness of prime factorization1 to provide security against eavesdropping attacks. Remarkably, quantum key distribution protocols such as the Bennett-Brassard scheme2 provide information-theoretic security against such attacks, a much stronger form of security unreachable by classical means. However, quantum protocols realized so far are subject to a new class of attacks exploiting a mismatch between the quantum states or measurements implemented and their theoretical modelling, as demonstrated in numerous experiments3-6. Here we present the experimental realization of a complete quantum key distribution protocol immune to these vulnerabilities, following Ekert's pioneering proposal7 to use entanglement to bound an adversary's information from Bell's theorem8. By combining theoretical developments with an improved optical fibre link generating entanglement between two trapped-ion qubits, we obtain 95,628 key bits with device-independent security9-12 from 1.5 million Bell pairs created during eight hours of run time. We take steps to ensure that information on the measurement results is inaccessible to an eavesdropper. These measurements are performed without space-like separation. Our result shows that provably secure cryptography under general assumptions is possible with real-world devices, and paves the way for further quantum information applications based on the device-independence principle.

4.
Phys Rev Lett ; 125(11): 110506, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32975988

ABSTRACT

We report the experimental realization of heralded distribution of single-photon path entanglement at telecommunication wavelengths in a repeater-like architecture. The entanglement is established upon detection of a single photon, originating from one of two spontaneous parametric down-conversion photon pair sources, after erasing the photon's which-path information. In order to certify the entanglement, we use an entanglement witness which does not rely on postselection. We herald entanglement between two locations, separated by a total distance of 2 km of optical fiber, at a rate of 1.6 kHz. This work paves the way towards high-rate and practical quantum repeater architectures.

5.
Phys Rev Lett ; 124(23): 230502, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603141

ABSTRACT

Device-independent quantum key distribution provides security even when the equipment used to communicate over the quantum channel is largely uncharacterized. An experimental demonstration of device-independent quantum key distribution is however challenging. A central obstacle in photonic implementations is that the global detection efficiency, i.e., the probability that the signals sent over the quantum channel are successfully received, must be above a certain threshold. We here propose a method to significantly relax this threshold, while maintaining provable device-independent security. This is achieved with a protocol that adds artificial noise, which cannot be known or controlled by an adversary, to the initial measurement data (the raw key). Focusing on a realistic photonic setup using a source based on spontaneous parametric down conversion, we give explicit bounds on the minimal required global detection efficiency.

6.
Phys Rev Lett ; 116(11): 116402, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035313

ABSTRACT

We report the experimental investigation and theoretical modeling of a rotating polariton superfluid relying on an innovative method for the injection of angular momentum. This novel, multipump injection method uses four coherent lasers arranged in a square, resonantly creating four polariton populations propagating inwards. The control available over the direction of propagation of the superflows allows injecting a controllable nonquantized amount of optical angular momentum. When the density at the center is low enough to neglect polariton-polariton interactions, optical singularities, associated with an interference pattern, are visible in the phase. In the superfluid regime resulting from the strong nonlinear polariton-polariton interaction, the interference pattern disappears and only vortices with the same sign are persisting in the system. Remarkably, the number of vortices inside the superfluid region can be controlled by controlling the angular momentum injected by the pumps.

7.
Phys Rev Lett ; 116(7): 070405, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26943515

ABSTRACT

Photons of a laser beam driving the upper motional sideband of an optomechanical cavity can decay into photon-phonon pairs by means of an optomechanical parametric process. The phononic state can subsequently be mapped to a photonic state by exciting the lower sideband, hence creating photon-photon pairs out of an optomechanical system. Here we show that these pairs can violate a Bell inequality when they are measured with photon counting techniques preceded by small displacement operations in phase space. The consequence of such a violation as well as the experimental requirements are intensively discussed.

8.
Phys Rev Lett ; 114(17): 170504, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25978215

ABSTRACT

How can one detect entanglement between multiple optical paths sharing a single photon? We address this question by proposing a scalable protocol, which only uses local measurements where single photon detection is combined with small displacement operations. The resulting entanglement witness does not require postselection, nor assumptions about the photon number in each path. Furthermore, it guarantees that entanglement lies in a subspace with at most one photon per optical path and reveals genuinely multipartite entanglement. We demonstrate its scalability and resistance to loss by performing various experiments with two and three optical paths. We anticipate applications of our results for quantum network certification.

9.
Phys Rev Lett ; 113(17): 173601, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25379916

ABSTRACT

Harnessing nonlinearities strong enough to allow single photons to interact with one another is not only a fascinating challenge but also central to numerous advanced applications in quantum information science. Here we report the nonlinear interaction between two single photons. Each photon is generated in independent parametric down-conversion sources. They are subsequently combined in a nonlinear waveguide where they are converted into a single photon of higher energy by the process of sum-frequency generation. Our approach results in the direct generation of photon triplets. More generally, it highlights the potential for quantum nonlinear optics with integrated devices and, as the photons are at telecom wavelengths, it opens the way towards novel applications in quantum communication such as device-independent quantum key distribution.

10.
Nat Commun ; 4: 2324, 2013.
Article in English | MEDLINE | ID: mdl-23945795

ABSTRACT

The parametric interaction of light beams in nonlinear materials is usually thought to be too weak to be observed when the fields involved are at the single-photon level. However, such single-photon level nonlinearity is not only fundamentally fascinating but holds great potential for emerging technologies and applications involving heralding entanglement at a distance. Here we use a high-efficiency waveguide to demonstrate the sum-frequency generation between a single photon and a single-photon level coherent state. The use of an integrated, solid state, room temperature device and telecom wavelengths makes this type of system directly applicable to future quantum communication technologies such as device-independent quantum key distribution.

11.
Phys Rev Lett ; 104(18): 180504, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20482160

ABSTRACT

Single-photon entanglement is a simple form of entanglement that exists between two spatial modes sharing a single photon. Despite its elementary form, it provides a resource as useful as polarization-entangled photons and it can be used for quantum teleportation and entanglement swapping operations. Here, we report the first experiment where single-photon entanglement is purified with a simple linear-optics based protocol. In addition to its conceptual interest, this result might find applications in long distance quantum communication based on quantum repeaters.

12.
Phys Rev Lett ; 93(22): 223602, 2004 Nov 26.
Article in English | MEDLINE | ID: mdl-15601090

ABSTRACT

We show that a field of frequency omega combined with its second harmonic 2omega driving a double-well potential allows us to localize the wave packet by adiabatic passage, starting from the delocalized ground state. The relative phase of the fields allows us to choose the well of localization. We can suppress (and restore) the tunneling subsequently by switching on (and off) abruptly the fields at well-defined times. The mechanism relies on the fact that the dynamics is driven to an eigenstate of the Floquet Hamiltonian which is a localized state.

SELECTION OF CITATIONS
SEARCH DETAIL
...