Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 920: 171073, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38382618

ABSTRACT

Ambient air pollution is a health concern in Latin America given its large urban population exposed to levels above recommended guidelines. Yet no studies have examined the mortality impact of air pollutants in the region across a wide range of cities. We assessed whether short-term levels of fine particulate matter (PM2.5) from modeled estimates, are associated with cardiovascular and respiratory mortality among adults in 337 cities from 9 Latin American countries. We compiled mortality, PM2.5 and temperature data for the period 2009-2015. For each city, we evaluated the association between monthly changes in PM2.5 and cardiovascular and respiratory mortality for sex and age subgroups using Poisson models, adjusted for seasonality, long-term trend, and temperature. To accommodate possibly different associations of mortality with PM2.5 by age, we included interaction terms between changes in PM2.5 and age in the models. We combined the city-specific estimates using a random effects meta-regression to obtain mortality relative risks for each sex and age group. We analyzed 3,026,861 and 1,222,623 cardiovascular and respiratory deaths, respectively, from a study population that represents 41 % of the total population of Latin America. We observed that a 10 µg/m3 increase in monthly PM2.5 is associated with an increase of 1.3 % (95 % confidence interval [CI], 0.4 to 2.2) in cardiovascular mortality and a 0.9 % increase (95 % CI -0.6 to 2.4) in respiratory mortality. Increases in mortality risk ranged between -0.5 % to 3.0 % across 6 sex-age groups, were larger in men, and demonstrated stronger associations with cardiovascular mortality as age increased. Socioeconomic, environmental and health contexts in Latin America are different than those present in higher income cities from which most evidence on air pollution impacts is drawn. Locally generated evidence constitutes a powerful instrument to engage civil society and help drive actions to mitigate and control ambient air pollution.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Respiratory Tract Diseases , Male , Adult , Humans , Latin America/epidemiology , Cities , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Dust , Cardiovascular Diseases/epidemiology , Environmental Exposure , Mortality
2.
Environ Sci Technol ; 50(1): 79-88, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26595236

ABSTRACT

Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model simulations, and ground measurements from 79 different countries to produce global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990 to 2010 and the year 2013. These estimates were applied to assess population-weighted mean concentrations for 1990-2013 for each of 188 countries. In 2013, 87% of the world's population lived in areas exceeding the World Health Organization Air Quality Guideline of 10 µg/m(3) PM2.5 (annual average). Between 1990 and 2013, global population-weighted PM2.5 increased by 20.4% driven by trends in South Asia, Southeast Asia, and China. Decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries. Population-weighted mean concentrations of ozone increased globally by 8.9% from 1990-2013 with increases in most countries-except for modest decreases in North America, parts of Europe, and several countries in Southeast Asia.


Subject(s)
Air Pollution/analysis , Cost of Illness , Environmental Exposure/analysis , Internationality , Humans , Ozone/analysis , Particle Size , Particulate Matter/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...