Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 23(4): 1036-44, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24105466

ABSTRACT

Transcriptional dysregulation has been proposed to play a major role in the pathology of Huntington's disease (HD). However, the mechanisms that cause selective downregulation of target genes remain unknown. Previous studies have shown that mutant huntingtin (Htt) protein interacts with a number of transcription factors thereby altering transcription. Here we report that Htt directly interacts with methyl-CpG binding protein 2 (MeCP2) in mouse and cellular models of HD using complimentary biochemical and Fluorescent Lifetime Imaging to measure Förster Resonance Energy Transfer approaches. Htt-MeCP2 interactions are enhanced in the presence of the expanded polyglutamine (polyQ) tract and are stronger in the nucleus compared with the cytoplasm. Furthermore, we find increased binding of MeCP2 to the promoter of brain-derived neurotrophic factor (BDNF), a gene that is downregulated in HD, in the presence of mutant Htt. Finally, decreasing MeCP2 levels in mutant Htt-expressing cells using siRNA increases BDNF levels, suggesting that MeCP2 downregulates BDNF expression in HD. Taken together, these findings suggest that aberrant interactions between Htt and MeCP2 contribute to transcriptional dysregulation in HD.


Subject(s)
Methyl-CpG-Binding Protein 2/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cell Line , Corpus Striatum/metabolism , Down-Regulation , Gene Expression , Humans , Huntingtin Protein , Huntington Disease/metabolism , Mice , Mice, Transgenic , Promoter Regions, Genetic , Protein Interaction Mapping , Transcription, Genetic
2.
PLoS One ; 8(12): e84806, 2013.
Article in English | MEDLINE | ID: mdl-24367698

ABSTRACT

Benzodiazepines (BZs) are safe drugs for treating anxiety, sleep, and seizure disorders, but their use also results in unwanted effects including memory impairment, abuse, and dependence. The present study aimed to reveal the molecular mechanisms that may contribute to the effects of BZs in the hippocampus (HIP), an area involved in drug-related plasticity, by investigating the regulation of immediate early genes following BZ administration. Previous studies have demonstrated that both brain derived neurotrophic factor (BDNF) and c-Fos contribute to memory- and abuse-related processes that occur within the HIP, and their expression is altered in response to BZ exposure. In the current study, mice received acute or repeated administration of BZs and HIP tissue was analyzed for alterations in BDNF and c-Fos expression. Although no significant changes in BDNF or c-Fos were observed in response to twice-daily intraperitoneal (i.p.) injections of diazepam (10 mg/kg + 5 mg/kg) or zolpidem (ZP; 2.5 mg/kg + 2.5 mg/kg), acute i.p. administration of both triazolam (0.03 mg/kg) and ZP (1.0 mg/kg) decreased BDNF protein levels within the HIP relative to vehicle, without any effect on c-Fos. ZP specifically reduced exon IV-containing BDNF transcripts with a concomitant increase in the association of methyl-CpG binding protein 2 (MeCP2) with BDNF promoter IV, suggesting that MeCP2 activity at this promoter may represent a ZP-specific mechanism for reducing BDNF expression. ZP also increased the association of phosphorylated cAMP response element binding protein (pCREB) with BDNF promoter I. Future work should examine the interaction between ZP and DNA as the cause for altered gene expression in the HIP, given that BZs can enter the nucleus and intercalate into DNA directly.


Subject(s)
Benzodiazepines/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Gene Expression Regulation/drug effects , Genes, Immediate-Early/physiology , Hippocampus/metabolism , Analysis of Variance , Animals , Blotting, Western , Chromatin Immunoprecipitation , Cyclic AMP Response Element-Binding Protein/metabolism , Diazepam , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation/genetics , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos/metabolism , Pyridines , Reverse Transcriptase Polymerase Chain Reaction , Triazolam , Zolpidem
3.
J Huntingtons Dis ; 2(3): 263-77, 2013.
Article in English | MEDLINE | ID: mdl-25062675

ABSTRACT

BACKGROUND: Huntington's disease (HD) is a neurodegenerative disorder with selective vulnerability of striatal neurons and involves extensive transcriptional dysregulation early in the disease process. Previous work in cell and mouse models has shown that histone modifications are altered in HD. Specifically, monoubiquitylated histone H2A (uH2A) is present at the promoters of downregulated genes which led to the hypothesis that uH2A plays a role in transcriptional silencing in HD. OBJECTIVE: To broaden our view of uH2A function in transcription in HD, we examined genome-wide binding sites of uH2A in 12-week old striatal tissue from R6/2 transgenic HD mouse model. METHODS: We used chromatin immunoprecipitation followed by genomic promoter microarray hybridization (ChIP-chip) and then interrogated how these binding sites correlate with transcribed genes. RESULTS: Our analysis reveals that, while uH2A levels are globally increased at the genome in the transgenic (TG) striatum, uH2A localization at a gene did not strongly correlate with the absence of its transcript. Furthermore, analysis of differential ubiquitylation in wild-type (WT) and TG striata did not reveal the expected enrichment of uH2A at genes with decreased expression in the TG striatum. CONCLUSIONS: This first description of genome-wide localization of uH2A in an HD model reveals that monoubiquitylation of histone H2A may not function at the level of the individual gene but may rather influence transcription through global chromatin structure.


Subject(s)
Brain/metabolism , Histones/genetics , Histones/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Ubiquitination , Ubiquitins/genetics , Ubiquitins/metabolism , Animals , Chromatin Immunoprecipitation , Disease Models, Animal , Gene Silencing , Mice , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic , Transcriptome
4.
PLoS One ; 7(7): e41423, 2012.
Article in English | MEDLINE | ID: mdl-22848491

ABSTRACT

In Huntington's disease (HD; MIM ID #143100), a fatal neurodegenerative disorder, transcriptional dysregulation is a key pathogenic feature. Histone modifications are altered in multiple cellular and animal models of HD suggesting a potential mechanism for the observed changes in transcriptional levels. In particular, previous work has suggested an important link between decreased histone acetylation, particularly acetylated histone H3 (AcH3; H3K9K14ac), and downregulated gene expression. However, the question remains whether changes in histone modifications correlate with transcriptional abnormalities across the entire transcriptome. Using chromatin immunoprecipitation paired with microarray hybridization (ChIP-chip), we interrogated AcH3-gene interactions genome-wide in striata of 12-week old wild-type (WT) and transgenic (TG) R6/2 mice, an HD mouse model, and correlated these interactions with gene expression levels. At the level of the individual gene, we found decreases in the number of sites occupied by AcH3 in the TG striatum. In addition, the total number of genes bound by AcH3 was decreased. Surprisingly, the loss of AcH3 binding sites occurred within the coding regions of the genes rather than at the promoter region. We also found that the presence of AcH3 at any location within a gene strongly correlated with the presence of its transcript in both WT and TG striatum. In the TG striatum, treatment with histone deacetylase (HDAC) inhibitors increased global AcH3 levels with concomitant increases in transcript levels; however, AcH3 binding at select gene loci increased only slightly. This study demonstrates that histone H3 acetylation at lysine residues 9 and 14 and active gene expression are intimately tied in the rodent brain, and that this fundamental relationship remains unchanged in an HD mouse model despite genome-wide decreases in histone H3 acetylation.


Subject(s)
Corpus Striatum/metabolism , Down-Regulation/genetics , Genetic Loci , Genome , Histones/metabolism , Acetylation/drug effects , Animals , Corpus Striatum/pathology , Disease Models, Animal , Down-Regulation/drug effects , Genome-Wide Association Study , Histone Deacetylase Inhibitors/pharmacology , Histones/genetics , Huntington Disease , Male , Mice , Mice, Transgenic
5.
Neurobiol Dis ; 46(2): 351-61, 2012 May.
Article in English | MEDLINE | ID: mdl-22590724

ABSTRACT

We have previously demonstrated amelioration of Huntington's disease (HD)-related phenotypes in R6/2 transgenic mice in response to treatment with the novel histone deacetylase (HDAC) inhibitor 4b. Here we have measured the selectivity profiles of 4b and related compounds against class I and class II HDACs and have tested their ability to restore altered expression of genes related to HD pathology in mice and to rescue disease effects in cell culture and Drosophila models of HD. R6/2 transgenic and wild-type (wt) mice received daily injections of HDAC inhibitors for 3 days followed by real-time PCR analysis to detect expression differences for 13 HD-related genes. We find that HDACi 4b and 136, two compounds showing high potency for inhibiting HDAC3 were most effective in reversing the expression of genes relevant to HD, including Ppp1r1b, which encodes DARPP-32, a marker for medium spiny striatal neurons. In contrast, compounds targeting HDAC1 were less effective at correcting gene expression abnormalities in R6/2 transgenic mice, but did cause significant increases in the expression of selected genes. An additional panel of 4b-related compounds was tested in a Drosophila model of HD and in STHdhQ111 striatal cells to further distinguish HDAC selectivity. Significant improvement in huntingtin-elicited Drosophila eye neurodegeneration in the fly was observed in response to treatment with compounds targeting human HDAC1 and/or HDAC3. In STHdhQ111 striatal cells, the ability of HDAC inhibitors to improve huntingtin-elicited metabolic deficits correlated with the potency at inhibiting HDAC1 and HDAC3, although the IC50 values for HDAC1 inhibition were typically 10-fold higher than for inhibition of HDAC3. Assessment of HDAC protein localization in brain tissue by Western blot analysis revealed accumulation of HDAC1 and HDAC3 in the nucleus of HD transgenic mice compared to wt mice, with a concurrent decrease in cytoplasmic localization, suggesting that these HDACs contribute to a repressive chromatin environment in HD. No differences were detected in the localization of HDAC2, HDAC4 or HDAC7. These results suggest that inhibition of HDACs 1 and 3 can relieve HD-like phenotypes in model systems and that HDAC inhibitors targeting these isotypes might show therapeutic benefit in human HD.


Subject(s)
Disease Models, Animal , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylases/metabolism , Huntington Disease/enzymology , Huntington Disease/genetics , Peptides/physiology , Phenotype , Animals , Cells, Cultured , Drosophila melanogaster , Drug Delivery Systems/methods , HCT116 Cells , Histone Deacetylase 1/metabolism , Humans , Huntington Disease/drug therapy , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic
6.
Mol Cell Neurosci ; 50(1): 70-81, 2012 May.
Article in English | MEDLINE | ID: mdl-22508027

ABSTRACT

Neural stem (NS) cells are a limitless resource, and thus superior to primary neurons for drug discovery provided they exhibit appropriate disease phenotypes. Here we established NS cells for cellular studies of Huntington's disease (HD). HD is a heritable neurodegenerative disease caused by a mutation resulting in an increased number of glutamines (Q) within a polyglutamine tract in Huntingtin (Htt). NS cells were isolated from embryonic wild-type (Htt(7Q/7Q)) and "knock-in" HD (Htt(140Q/140Q)) mice expressing full-length endogenous normal or mutant Htt. NS cells were also developed from mouse embryonic stem cells that were devoid of Htt (Htt(-/-)), or knock-in cells containing human exon1 with an N-terminal FLAG epitope tag and with 7Q or 140Q inserted into one of the mouse alleles (Htt(F7Q/7Q) and Htt(F140Q/7Q)). Compared to Htt(7Q/7Q) NS cells, HD Htt(140Q/140Q) NS cells showed significantly reduced levels of cholesterol, increased levels of reactive oxygen species (ROS), and impaired motility. The heterozygous Htt(F140Q/7Q) NS cells had increased ROS and decreased motility compared to Htt(F7Q/7Q). These phenotypes of HD NS cells replicate those seen in HD patients or in primary cell or in vivo models of HD. Huntingtin "knock-out" NS cells (Htt(-/-)) also had impaired motility, but in contrast to HD cells had increased cholesterol. In addition, Htt(140Q/140Q) NS cells had higher phospho-AKT/AKT ratios than Htt(7Q/7Q) NS cells in resting conditions and after BDNF stimulation, suggesting mutant htt affects AKT dependent growth factor signaling. Upon differentiation, the Htt(7Q/7Q) and Htt(140Q/140Q) generated numerous Beta(III)-Tubulin- and GABA-positive neurons; however, after 15 days the cellular architecture of the differentiated Htt(140Q/140Q) cultures changed compared to Htt(7Q/7Q) cultures and included a marked increase of GFAP-positive cells. Our findings suggest that NS cells expressing endogenous mutant Htt will be useful for study of mechanisms of HD and drug discovery.


Subject(s)
Cholesterol/metabolism , Nerve Tissue Proteins/genetics , Neural Stem Cells/metabolism , Nuclear Proteins/genetics , Animals , Cell Differentiation/physiology , Cell Movement , Disease Models, Animal , Embryonic Stem Cells/metabolism , Huntingtin Protein , Huntington Disease/genetics , Huntington Disease/metabolism , Mice , Mice, Mutant Strains , Mice, Transgenic , Mutagenesis, Insertional , Mutation , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Nuclear Proteins/metabolism , Phenotype , Reactive Oxygen Species/metabolism
7.
J Neurochem ; 120(2): 202-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22043863

ABSTRACT

Recent evidence suggests that the persistence of cocaine seeking during periods of protracted drug abstinence following chronic cocaine exposure is mediated, in part, by neuroadaptations in the mesolimbic dopamine system. Specifically, incubation of cocaine-seeking behavior coincides with increased brain-derived neurotrophic factor (BDNF) protein expression in the ventral tegmental area (VTA). However, the molecular mechanisms that regulate time-dependent changes in VTA BDNF protein expression during cocaine abstinence are unclear. The goal of these experiments was to determine whether VTA BDNF transcript levels are altered following cocaine abstinence and identify the molecular mechanisms regulating cocaine-induced changes in VTA BDNF transcription. Rats were allowed to self-administer cocaine (0.25 mg/infusion, i.v.) for 14 days on a fixed-ratio schedule of reinforcement followed by 7 days of forced drug abstinence. BDNF protein and exon I-containing transcripts were significantly increased in the VTA of cocaine-experienced rats following 7 days of forced drug abstinence compared to yoked saline controls. Cocaine-induced changes in BDNF mRNA were associated with increased acetylation of histone 3 and binding of CREB-binding protein to exon I-containing promoters in the VTA. Taken together, these results suggest that drug abstinence following cocaine self-administration remodels chromatin in the VTA resulting in increased expression of BDNF, which may contribute to neuroadaptations underlying cocaine craving and relapse.


Subject(s)
Anesthetics, Local/administration & dosage , Brain-Derived Neurotrophic Factor/metabolism , CREB-Binding Protein/metabolism , Cocaine/administration & dosage , Gene Expression Regulation/drug effects , Histones/metabolism , Ventral Tegmental Area/metabolism , Acetylation/drug effects , Animals , Brain-Derived Neurotrophic Factor/genetics , Chromatin Immunoprecipitation , Cocaine-Related Disorders , Conditioning, Operant/drug effects , Enzyme-Linked Immunosorbent Assay/methods , Male , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/physiology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reinforcement Schedule , Self Administration , Statistics, Nonparametric , Substance Withdrawal Syndrome/metabolism , Time Factors , Ventral Tegmental Area/drug effects
8.
J Neurosci ; 31(38): 13400-11, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21940433

ABSTRACT

Prenatal cocaine exposure impairs brain development and produces lasting alterations in cognitive function. In a prenatal cocaine exposure mouse model, we found that tangential migration of GABA neurons from the basal to the dorsal forebrain and radial neuron migration within the dorsal forebrain were significantly decreased during the embryonic period. The decrease in the tangential migration occurred early in gestation and normalized by late gestation, despite ongoing cocaine exposure. The decrease in radial migration was associated with altered laminar positioning of neurons in the medial prefrontal cortex. The cocaine exposure led to transient decreases in the expression of Tbr2 and Tbr1, transcription factors associated with intermediate progenitor cells and newborn neurons of the dorsal forebrain, respectively, although neurogenesis was not significantly altered. Since cocaine can modulate brain derived neurotrophic factor (BDNF) expression in the mature brain, we examined whether cocaine can alter BDNF expression in the embryonic brain. We found a transient decrease in BDNF protein expression in the cocaine-exposed embryonic forebrain early in gestation. By late gestation, the BDNF expression recovered to control levels, despite ongoing cocaine exposure. In basal forebrain explants from cocaine-exposed embryos, cell migration was significantly decreased, corroborating the in vivo data on tangential GABA neuron migration. Since BDNF can influence tangential neuronal migration, we added BDNF to the culture medium and observed increased cell migration. Our data suggest that cocaine can alter tangential and radial neuronal migration as well as BDNF expression in the embryonic brain and that decreased BDNF may mediate cocaine's effects on neuronal migration.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Cell Movement/drug effects , Cocaine/pharmacology , Neurons/physiology , Prosencephalon/drug effects , Age Factors , Animals , Brain-Derived Neurotrophic Factor/physiology , Cell Death/drug effects , Cell Movement/physiology , DNA-Binding Proteins/biosynthesis , Embryo, Mammalian , Female , Gene Knock-In Techniques/methods , Glutamate Decarboxylase/genetics , Mice , Neurogenesis/drug effects , Neurons/metabolism , Nuclear Proteins/biosynthesis , Prefrontal Cortex/anatomy & histology , Prefrontal Cortex/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Prosencephalon/growth & development , Prosencephalon/metabolism , Prosencephalon/physiology , T-Box Domain Proteins/biosynthesis , Thyroid Nuclear Factor 1 , Transcription Factors/biosynthesis , gamma-Aminobutyric Acid/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...