Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Physiol ; 15: 1357730, 2024.
Article in English | MEDLINE | ID: mdl-38595641

ABSTRACT

Background: Incretins, i.e., glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) promote insulin secretion to reduce postprandial blood sugar. Previous studies found incretins in the salivary glands. However, the role of GLP-1 and GIP in the submandibular gland (SMG) is unclear. This study investigates the effects of a high-fat diet (HFD) on the expression of GLP-1 and GIP throughout the development of rat SMG. Methods: Pregnant 11-week-old Wistar rats were divided into two groups: those fed on a standard diet (n = 5) and those fed on a HFD (n = 5). From day 7 of pregnancy and throughout the lactation period, all the rats were fed on either a chow diet or HFD. The newborns were divided into four subgroups (n = 6): standard diet males (SM), HFD males (HM), standard diet females (SF), and HFD females (HF). The SMGs of 3- and 10-week-old rats from each subgroup were collected under general anesthesia. Moreover, body weight, food intake, and fasting blood sugar were measured. The mRNA expression of GLP-1 and GIP was quantified, and the localization was observed using immunohistochemistry (p < 0.05). Results: GLP-1 mRNA expression was statistically significantly more upregulated in HM than in HF at 3 weeks. Moreover, GLP-1 mRNA expression was significantly higher in HM than in both SM and HF at 10 weeks. Although a decreasing trend was observed in GIP mRNA expression in both 3- and 10-week-old rats fed on a HFD, a significant difference between HM and SM only occurred at 3 weeks. Furthermore, the GIP mRNA expression of HM was lower than that of HF at 10 weeks. Immunohistochemical staining revealed GLP-1 and GIP expression mainly in the SMG duct system. Moreover, vacuolated cytoplasm in the duct was observed in rats fed on a HFD. Conclusion: Exposure to HFD during pre- and post-natal periods increased GLP-1 mRNA expression in the SMGs of male rats. However, GIP expression decreased following the HFD in male newborns. Furthermore, a decreasing trend of GIP mRNA expression was observed in male newborns after HFD feeding. Sex influenced incretin hormones secretion and obesity-related conditions. HFD during pre- and post-natal periods reprograms the epigenome, contributing to subsequent disease development.

2.
Sci Rep ; 13(1): 5742, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029190

ABSTRACT

High-fat diet (HFD) leads to multiple complications, including taste alteration. This study observed the effect of a two-generation exposure to an HFD on the peripheral taste system in offspring. Ten pregnant Wistar rats were assigned a standard diet (SD) (n = 5) or HFD (n = 5) from day 7 of pregnancy through the lactation. Thirty-six male and female 3-week-old offspring were measured for body weight and blood glucose level, and the circumvallate papillae were collected. The other twenty-four 3-week-old offspring were weaned on the same diet as their mothers and raised individually. The taste preference behaviors were studied using the two-bottle taste preference test and analyzed five basic tastes (sweet, bitter, umami, sour, and salty). The expressions of epithelial sodium channel alpha subunit (ENaCα) and angiotensin II receptor type 1 (AT1) in the circumvallate papilla were analyzed by immunohistochemical staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We found increased body weight and salty taste preference of offspring from the HFD group in both sexes. Correspondingly, the AT1 level of the taste bud cells significantly increased in 3-week-old female offspring from the HFD group. An increase in AT1 levels may be a risk factor for changes in salty taste preference.


Subject(s)
Taste Buds , Taste , Pregnancy , Rats , Male , Female , Animals , Diet, High-Fat/adverse effects , Food Preferences , Rats, Wistar , Taste Perception , Taste Buds/metabolism , Dysgeusia , Body Weight
3.
J Clin Med ; 12(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902691

ABSTRACT

This study aimed to examine the sexual dimorphism effect of two-generation exposure to a high-fat diet (HFD) on the craniofacial growth of rat offspring. Ten eleven-week-old pregnant Wistar rats were fed either a control or HFD from day 7 of pregnancy until the end of lactation. Twelve male and female offspring from the control-diet-fed mothers were assigned to the CM (control male, n = 6) and CF (control female, n = 6) groups. The other twelve from the HFD-fed mothers were assigned to the HFD male (HFDM, n = 6) and HFD female (HFDF, n = 6) groups. HFDM and HFDF rats continued with an HFD. The offspring's weight and fasting blood sugar levels were measured every two weeks. The craniofacial and dental morphologies were studied from lateral X-rays of the head at ten weeks old. The HFDM rats showed an increased body weight and larger neurocranial parameters compared with the CM group. Furthermore, there were slightly significant differences in body weight and viscerocranial parameters between the rats in the HFDF and CF groups. In conclusion, two-generational exposure to an HFD had a greater effect on the male offspring's body weight and craniofacial morphology.

SELECTION OF CITATIONS
SEARCH DETAIL
...