Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Polym Environ ; 31(7): 2741-2760, 2023.
Article in English | MEDLINE | ID: mdl-36811096

ABSTRACT

The excessive usage of non-renewable resources to produce plastic commodities has incongruously influenced the environment's health. Especially in the times of COVID-19, the need for plastic-based health products has increased predominantly. Given the rise in global warming and greenhouse gas emissions, the lifecycle of plastic has been established to contribute to it significantly. Bioplastics such as polyhydroxy alkanoates, polylactic acid, etc. derived from renewable energy origin have been a magnificent alternative to conventional plastics and reconnoitered exclusively for combating the environmental footprint of petrochemical plastic. However, the economically reasonable and environmentally friendly procedure of microbial bioplastic production has been a hard nut to crack due to less scouted and inefficient process optimization and downstream processing methodologies. Thereby, meticulous employment of computational tools such as genome-scale metabolic modeling and flux balance analysis has been practiced in recent times to understand the effect of genomic and environmental perturbations on the phenotype of the microorganism. In-silico results not only aid us in determining the biorefinery abilities of the model microorganism but also curb our reliance on equipment, raw materials, and capital investment for optimizing the best conditions. Additionally, to accomplish sustainable large-scale production of microbial bioplastic in a circular bioeconomy, extraction, and refinement of bioplastic needs to be investigated extensively by practicing techno-economic analysis and life cycle assessment. This review put forth state-of-the-art know-how on the proficiency of these computational techniques in laying the foundation of an efficient bioplastic manufacturing blueprint, chiefly focusing on microbial polyhydroxy alkanoates (PHA) production and its efficacy in outplacing fossil based plastic products.

2.
Front Microbiol ; 12: 674864, 2021.
Article in English | MEDLINE | ID: mdl-35058887

ABSTRACT

Impetuous urbanization and population growth are driving increased demand for plastics to formulate impeccable industrial and biomedical commodities. The everlasting nature and excruciating waste management of petroleum-based plastics have catered to numerous challenges for the environment. However, just implementing various end-of-life management techniques for assimilation and recycling plastics is not a comprehensive remedy; instead, the extensive reliance on finite resources needs to be reduced for sustainable production and plastic product utilization. Microorganisms, such as bacteria and algae, are explored substantially for their bioplastic production repertoire, thus replacing fossil-based plastics sooner or later. Nevertheless, the utilization of pure microbial cultures has led to various operational and economical complications, opening the ventures for the usage of mixed microbial cultures (MMCs) consisting of bacteria and algae for sustainable production of bioplastic. The current review is primarily focuses on elaborating the bioplastic production capabilities of different bacterial and algal strains, followed by discussing the quintessence of MMCs. The present state-of-the-art of bioplastic, different types of bacterial bioplastic, microalgal biocomposites, operational factors influencing the quality and quantity of bioplastic precursors, embracing the potential of bacteria-algae consortia, and the current global status quo of bioplastic production has been summarized extensively.

3.
Phytother Res ; 35(5): 2296-2316, 2021 May.
Article in English | MEDLINE | ID: mdl-33210447

ABSTRACT

Covid-19 pandemic severely affected human health worldwide. Till October 19, 2020, total confirmed patients of COVID-19 are 39,944,882, whereas 1,111,998 people died across the globe. Till to date, we do not have any specific medicine and/or vaccine to treat COVID-19; however, research is still going on at war footing. So far vaccine development is concerned, here it is noteworthy that till now three major variants (named A, B, and C) of severe acute respiratory syndrome-coronavirus2 (SARS-CoV-2) have been recognized. Increased mutational rate and formation of new viral variants may increase the attrition rate of vaccines and/or candidate chemotherapies. Herbal remedies are chemical cocktails, thus open another avenue for effective antiviral therapeutics development. In fact, India is a large country, which is densely populated, but the overall severity of COVID-19 per million populations is lesser than any other country of the world. One of the major reasons for the aforesaid difference is the use of herbal remedies by the Government of India as a preventive measure for COVID-19. Therefore, the present review focuses on the epidemiology and molecular pathogenesis of COVID-19 and explores algal metabolites for their antiviral properties.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , India/epidemiology , Pandemics/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...