Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 31(5): 1151-1154, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32275420

ABSTRACT

Hydrogen/deuterium exchange (HDX) is used in protein biophysics to probe folding dynamics, intermolecular interactions, epitope and other mapping. A typical procedure often involves HDX in buffered D2O solution followed by pepsin digestion, and liquid chromatography/electrospray ionization mass spectrometry analysis. In this work, HDX of protein ions was conducted in the ESI source. Both native electrospray droplets of ubiquitin and denatured myoglobin were exposed to D2O vapor in the source region of a Bruker SolariX 12T FTICR-mass spectrometer. Electron capture dissociation was used to assess deuterium incorporation at the residue level. This in-source HDX, on the millisecond-time scale, exchanges side-chain hydrogens and fast-exchanging amides compared to conventional minutes-to-hours HDX of backbone hydrogens in solution with less sample preparation (i.e., no D2O/protein mixing and incubation, no quenching, protein digestion, or LC separation).


Subject(s)
Deuterium/chemistry , Hydrogen/chemistry , Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Deuterium Exchange Measurement/methods , Myoglobin/chemistry , Pepsin A/metabolism , Protein Denaturation , Proteins/metabolism , Solutions , Ubiquitin/chemistry
2.
J Am Chem Soc ; 134(30): 12354-7, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22809110

ABSTRACT

A series of heteroleptic bis(tridentate) ruthenium(II) complexes, each bearing a substituted 2,2':6',2″-terpyridine (terpy) ligand, is characterized by room temperature microsecond excited-state lifetimes. This observation is a consequence of the strongly σ-donating and weakly π-accepting tridentate carbene ligand, 2',6'-bis(1-mesityl-3-methyl-1,2,3-triazol-4-yl-5-idene)pyridine (C^N^C), adjacent to the terpy maintaining a large separation between the ligand field and metal-to-ligand charge transfer (MLCT) states while also preserving a large (3)MLCT energy. The observed lifetimes are the highest documented lifetimes for unimolecular ruthenium(II) complexes and are four orders in magnitude higher than that associated with [Ru(terpy)(2)](2+).


Subject(s)
Coordination Complexes/chemistry , Methane/analogs & derivatives , Pyridines/chemistry , Ruthenium/chemistry , Ligands , Methane/chemistry
3.
J Org Chem ; 71(20): 7785-92, 2006 Sep 29.
Article in English | MEDLINE | ID: mdl-16995687

ABSTRACT

The mechanistic aspects of the photosensitized reactions of a series of benzaldehyde oximes (1a-o) were studied by steady-state (product studies) and laser flash photolysis methods. Nanosecond laser flash photolysis studies have shown that the reaction of the oxime with triplet chloranil (3CA) proceeds via an electron-transfer mechanism provided the free energy for electron transfer (DeltaG(ET)) is favorable; typically, the oxidation potential of the oxime should be below 2.0 V. Substituted benzaldehyde oximes with oxidation potentials greater than 2.0 V quench 3CA at rates that are independent of the substituent and the oxidation potential. The most likely mechanism under these conditions is a hydrogen atom transfer mechanism as this reaction should be dependent on the O-H bond strength only, which is virtually the same for all oximes. Product studies have shown that aldoximes react to give both the corresponding aldehyde and the nitrile. The important intermediate in the aldehyde pathway is the iminoxyl radical, which is formed via an electron transfer-proton transfer (ET-PT) sequence (for oximes with low oxidation potentials) or via a hydrogen atom transfer (HAT) pathway (for oximes with larger oxidation potentials). The nitriles are proposed to result from intermediate iminoyl radicals, which can be formed via direct hydrogen atom abstraction or via an electron-transfer-proton-transfer sequence. The experimental data seems to support the direct hydrogen atom abstraction as evidenced by the break in linearity in the plot of the quenching rates against the oxidation potential, which suggests a change in mechanism. The nitrile product is favored when electron-accepting substituents are present on the benzene ring of the benzaldehyde oximes or when the hydroxyl hydrogen atom is unavailable for abstraction. The latter is the case in pyridine-2-carboxaldoxime (2), where a strong intramolecular hydrogen bond is formed. Other molecules that form weaker intramolecular hydrogen bonds such as 2-furaldehyde oxime (3) and thiophene-2-carboxaldoxime (4) tend to yield increasing amounts of aldehyde.

SELECTION OF CITATIONS
SEARCH DETAIL
...