Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Theor Appl Genet ; 117(8): 1225-40, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18712342

ABSTRACT

A recombinant inbred line (RIL) population and a set of advanced lines from multiple crosses were used to investigate the leaf rust (Puccinia triticina Eriks.) resistance carried by the durum wheat cultivar Creso and its derivatives (Colosseo and Plinio). One hundred seventy-six RILs from the cross Colosseo x Lloyd were tested under artificial rust inoculation in the field. The response at the seedling stage was also investigated. A major QTL (QLr.ubo-7B.2) for leaf rust resistance controlling both the seedling and the adult open field based-response was mapped on 7BL, with the favourable allele inherited from Colosseo. QLr.ubo-7B.2 showed R2 and LOD peak values for the area under disease progress curve (AUDPC) equal to 72.9% and 44.5, respectively. The presence and location of QLr.ubo-7B.2 was validated by a linkage disequilibrium-based test using two-year field data of 62 advanced lines from 21 crosses with Creso, Colosseo or Plinio as resistance donors. QLr.ubo-7B.2 maps in a gene-dense region (7BL10-0.78-1.00) carrying several genes/QTLs in wheat and barley for resistance to rusts and other fungal diseases.


Subject(s)
Chromosome Mapping , Chromosomes, Plant , Quantitative Trait Loci , Triticum/genetics , Alleles , Basidiomycota/pathogenicity , Breeding , Genetic Markers , Genotype , Immunity, Innate , Linkage Disequilibrium , Microsatellite Repeats , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/microbiology
2.
Genome ; 50(8): 714-23, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17893731

ABSTRACT

Hordeum vulgare subsp. spontaneum is the progenitor of cultivated barley (Hordeum vulgare L.). Domestication combined with plant breeding has led to the morphological and agronomic characteristics of modern barley cultivars. The objective of this study was to map the genetic factors that morphologically and agronomically differentiate wild barley from modern barley cultivars. To address this objective, we identified quantitative trait loci (QTLs) associated with plant height, flag leaf width, spike length, spike width, glume length in relation to seed length, awn length, fragility of ear rachis, endosperm width and groove depth, heading date, flag leaf length, number of tillers per plant, and kernel color in a Harrington/OUH602 advanced backcross (BC2F8) population. This population was genotyped with 113 simple sequence repeat markers. Thirty QTLs were identified, of which 16 were newly identified in this study. One to 4 QTLs were identified for each of the traits except glume length, for which no QTL was detected. The portion of phenotypic variation accounted for by individual QTLs ranged from about 9% to 54%. For traits with more than one QTL, the phenotypic variation explained ranged from 25% to 71%. Taken together, our results reveal the genetic architecture of morphological and agronomic traits that differentiate wild from cultivated barley.


Subject(s)
Crops, Agricultural/genetics , Crosses, Genetic , Hordeum/genetics , Quantitative Trait Loci , Chromosome Mapping , Chromosomes, Plant , DNA, Plant/genetics , DNA, Plant/isolation & purification , Genetic Markers , Genotype , Microsatellite Repeats
3.
Genome ; 50(4): 373-84, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17546096

ABSTRACT

The determination of genetic relatedness among elite materials of crop species allows for more efficient management of breeding programs and for the protection of breeders' rights. Seventy simple sequence repeats (SSRs) and 234 amplified fragment length polymorphisms (AFLPs) were used to profile a collection of 58 durum wheat (Triticum durum Desf.) accessions, representing the most important extant breeding programs. In addition, 42 phenotypic traits, including the morphological characteristics recommended for the official distinctness, uniformity, and stability tests, were recorded. The correlation between the genetic similarities obtained with the 2 marker classes was high (r = 0.81), whereas lower values were observed between molecular and phenotypic data (r = 0.46 and 0.56 for AFLPs and SSRs, respectively). Morphological data, even if sampled in high numbers, largely failed to describe the pattern of genetic similarity, according to known pedigree data and the indications provided by molecular markers.


Subject(s)
Minisatellite Repeats/genetics , Phenotype , Polymorphism, Genetic , Triticum/genetics , Alleles , Phylogeny , Triticum/anatomy & histology , Triticum/classification
4.
Genome ; 50(4): 385-99, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17546097

ABSTRACT

The study of direct ancestry relationships provides information with which to determine essential derivation. SSR profiles were used to determine the pattern of relatedness among 134 durum wheat accessions, representing the most important modern durum wheat gene pools. Simple sequence repeat (SSR)- and amplified fragment length polymorphism (AFLP)-based genetic similarities among cultivars with accurate pedigrees were compared with pedigree-based coefficients of parentage. Sizeable departures of molecular similarities from the expected ones were observed, indicating the unreliability of inferring the pattern of genetic relatedness from the coefficient of parentage. Case studies consisting of parent-progeny cultivar trios and pairs, identified on the basis of their registered pedigree, were studied to evaluate the probability of ancestry of each progeny cultivar, compared with all the remaining accessions. Rare alleles and haplotype sharing were also explored. When the results did not agree with the registered parentages, SSR markers provided information with which to identify the most probable parents (or the corresponding "breeding lineages") in the collection.


Subject(s)
Pedigree , Phylogeny , Triticum/genetics , Alleles , Genetic Markers , Haplotypes/genetics , Minisatellite Repeats/genetics , Random Amplified Polymorphic DNA Technique , Triticum/classification
5.
J Exp Bot ; 58(2): 319-26, 2007.
Article in English | MEDLINE | ID: mdl-17050640

ABSTRACT

A major QTL affecting root traits and leaf ABA concentration was identified in maize (Zea mays L.) and named root-ABA1. For this QTL, back-cross-derived lines (BDLs) homozygous either for the (+) or for the (-) allele increasing or decreasing, respectively, root size and leaf ABA concentration, were developed. This study was conducted to evaluate the QTL effects in various genetic backgrounds and at different water regimes. The (+/+) and (-/-) BDLs were crossed with five or 13 inbred tester lines of different origin, thus producing two sets of test-crosses that were evaluated in Italy and China, respectively. Testing was conducted under both well-watered and water-stressed conditions. In Italy, the test-crosses derived from (+/+) BDLs, as compared with those derived from (-/-) BDLs, showed, across both water regimes, higher leaf ABA concentration (on average 384 versus 351 ng g(-1) DW) and lower root lodging (28.0 versus 52.5%), and lower grain yield under water-stressed conditions (4.88 versus 6.27 Mg ha(-1)). In China, where root lodging did not occur, the test-crosses derived from (+/+) BDLs were less productive at both water regimes (on average, 6.83 versus 7.49 Mg ha(-1)). The lower grain yield of the test-crosses derived from (+/+) BDLs was due to a lower number of ears per plant and to lower kernel weight. The results indicate that the (+) root-ABA1 allele confers not only a consistently lower susceptibility to root lodging but also a lower grain yield, especially when root lodging does not occur.


Subject(s)
Plant Roots/genetics , Plant Roots/physiology , Quantitative Trait Loci , Seeds/growth & development , Water/metabolism , Zea mays/genetics , Zea mays/physiology , Abscisic Acid/metabolism , Crosses, Genetic , Gene Deletion , Plant Leaves/metabolism , Plant Roots/drug effects , Seeds/drug effects , Water/pharmacology , Zea mays/drug effects , Zea mays/growth & development
6.
Theor Appl Genet ; 110(5): 865-80, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15719212

ABSTRACT

A population of 96 doubled haploid lines (DHLs) was prepared from F1 plants of the hexaploid wheat cross Chinese Spring x SQ1 (a high abscisic acid-expressing breeding line) and was mapped with 567 RFLP, AFLP, SSR, morphological and biochemical markers covering all 21 chromosomes, with a total map length of 3,522 cM. Although the map lengths for each genome were very similar, the D genome had only half the markers of the other two genomes. The map was used to identify quantitative trait loci (QTLs) for yield and yield components from a combination of 24 site x treatment x year combinations, including nutrient stress, drought stress and salt stress treatments. Although yield QTLs were widely distributed around the genome, 17 clusters of yield QTLs from five or more trials were identified: two on group 1 chromosomes, one each on group 2 and group 3, five on group 4, four on group 5, one on group 6 and three on group 7. The strongest yield QTL effects were on chromosomes 7AL and 7BL, due mainly to variation in grain numbers per ear. Three of the yield QTL clusters were largely site-specific, while four clusters were largely associated with one or other of the stress treatments. Three of the yield QTL clusters were coincident with the dwarfing gene Rht-B1 on 4BS and with the vernalisation genes Vrn-A1 on 5AL and Vrn-D1 on 5DL. Yields of each DHL were calculated for trial mean yields of 6 g plant(-1) and 2 g plant(-1) (equivalent to about 8 t ha(-1) and 2.5 t ha(-1), respectively), representing optimum and moderately stressed conditions. Analyses of these yield estimates using interval mapping confirmed the group-7 effects on yield and, at 2 g plant(-1), identified two additional major yield QTLs on chromosomes 1D and 5A. Many of the yield QTL clusters corresponded with QTLs already reported in wheat and, on the basis of comparative genetics, also in rice. The implications of these results for improving wheat yield stability are discussed.


Subject(s)
Chromosome Mapping , Environment , Polyploidy , Quantitative Trait Loci , Triticum/genetics , Biomass , Crosses, Genetic , Minisatellite Repeats/genetics , Nucleic Acid Amplification Techniques , Polymorphism, Restriction Fragment Length , Triticum/growth & development
7.
Theor Appl Genet ; 107(5): 783-97, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12845433

ABSTRACT

It has been argued that the level of genetic diversity in the modern durum wheat ( Triticum turgidum L. var. durum) elite germplasm may have declined due to the high selection pressure applied in breeding programs. In this study, 58 accessions covering a wide spectrum of genetic diversity of the cultivated durum wheat gene pool were characterized with 70 microsatellite loci (or simple sequence repeats, SSRs). On average, SSRs detected 5.6 different allelic variants per locus, with a mean diversity index (DI) equal to 0.56, thus revealing a diversity content comparable to those previously observed with SSRs in other small-grain cereal gene pools. The mean genetic similarity value was equal to 0.44. A highly diagnostic SSR set has been identified. A high variation in allele size was detected among SSR loci, suggesting a different suitability of these loci for estimating genetic diversity. The B genome was characterized by an overall polymorphism significantly higher than that of the A genome. Genetic diversity is organised in well-distinct sub-groups identified by the corresponding foundation-genotypes. A large portion (92.7%) of the molecular variation detected within the group of 45 modern cvs was accounted for by SSR alleles tracing back to ten foundation-genotypes; among those, the most recent CIMMYT-derived founders were genetically distant from the old Mediterranean ones. On the other hand, rare alleles were abundant, suggesting that a large number of genetic introgressions contributed to the foundation of the well-diversified germplasm herein considered. The profiles of recently released varieties indicate that the level of genetic diversity present in the modern durum wheat germplasm has actually increased over time.


Subject(s)
Genes, Plant/genetics , Genetic Variation , Microsatellite Repeats , Repetitive Sequences, Nucleic Acid , Triticum/genetics , Alleles , DNA, Plant , Evolution, Molecular , Genome, Plant , Phylogeny , Polymorphism, Genetic , Selection, Genetic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL