Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 12(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36364662

ABSTRACT

We investigated the composition uniformity of InGaN epilayers in presence of metal droplets on the surface. We used Plasma Assisted MBE to grow an InGaN sample partially covered by metal droplets and performed structural and compositional analysis. The results showed a marked difference in indium incorporation between the region under the droplets and between them. Based on this observation we proposed a theoretical model able to explain the results by taking into account the vapour liquid solid growth that takes place under the droplet by direct impingement of nitrogen adatoms.

2.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296766

ABSTRACT

We investigate in detail the role of strain relaxation and capping overgrowth in the self-assembly of InAs quantum dots by droplet epitaxy. InAs quantum dots were realized on an In0.6Al0.4As metamorphic buffer layer grown on a GaAs(111)A misoriented substrate. The comparison between the quantum electronic calculations of the optical transitions and the emission properties of the quantum dots highlights the presence of a strong quenching of the emission from larger quantum dots. Detailed analysis of the surface morphology during the capping procedure show the presence of a critical size over which the quantum dots are plastically relaxed.

3.
Sci Rep ; 11(1): 6833, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33767304

ABSTRACT

We investigated the nucleation of Ga droplets on singular GaAs(111)A substrates in the view of their use as the seeds for the self-assembled droplet epitaxial quantum dots. A small critical cluster size of 1-2 atoms characterizes the droplet nucleation. Low values of the Hopkins-Skellam index (as low as 0.35) demonstrate a high degree of a spatial order of the droplet ensemble. Around [Formula: see text] the droplet size distribution becomes bimodal. We attribute this observation to the interplay between the local environment and the limitation to the adatom surface diffusion introduced by the Ehrlich-Schwöbel barrier at the terrace edges.

4.
Nanomaterials (Basel) ; 10(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348747

ABSTRACT

We report on the dewetting process, in a high vacuum environment, of amorphous Ge thin films on SiO2/Si (001). A detailed insight of the dewetting is obtained by in situ reflection high-energy electron diffraction and ex situ scanning electron microscopy. These characterizations show that the amorphous Ge films dewet into Ge crystalline nano-islands with dynamics dominated by crystallization of the amorphous material into crystalline nano-seeds and material transport at Ge islands. Surface energy minimization determines the dewetting process of crystalline Ge and controls the final stages of the process. At very high temperatures, coarsening of the island size distribution is observed.

5.
Nanomaterials (Basel) ; 10(8)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32752124

ABSTRACT

We show that the density of indium islands on GaAs(111)A substrates have a non-monotonic, reentrant behavior as a function of the indium deposition temperature. The expected increase in the density with decreasing temperature, indeed, is observed only down to 160 ∘C, where the indium islands undertake the expected liquid-to-solid phase transition. Further decreasing the temperature causes a sizable reduction of the island density. An additional reentrant increasing behavior is observed below 80 ∘C. We attribute the above complex behavior to the liquid-solid phase transition and to the complex island-island interaction which takes place between crystalline islands in the presence of strain. Indium solid islands grown at temperatures below 160 ∘C have a face-centered cubic crystal structure.

6.
Sci Rep ; 10(1): 11628, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32669650

ABSTRACT

Mid-infrared sensors detect infrared radiation emitted from objects, and are actually widely used for monitoring gases and moisture as well as for imaging objects at or above room temperature. Infrared photodetectors offer fast detection, but many devices cannot provide high responsivity at room temperature. Here we demonstrate infrared sensing with high responsivity at room temperature. The central part of our device is an Al0.3Ga0.7As/GaAs heterostructure containing InAs quantum-dot (QD) layer with a 10-nm-thick GaAs spacer. In this device, the electrons that have been accumulated at the heterointerface are transferred to the conduction band of the Al0.3Ga0.7As barrier by absorbing infrared photons and the following drift due to the electric field at the interface. These intraband transitions at the heterointerface are sensitized by the QDs, suggesting that the presence of the QDs increases the strength of the intraband transition near the heterointerface. The room-temperature responsivity spectrum exhibits several peaks in the mid-infrared wavelength region, corresponding to transitions from the InAs QD and wetting layer states as well as the transition from the quantized state of the triangular potential well at the two-dimensional heterointerface. We find that the responsivity is almost independent of the temperature and the maximum value at 295 K is 0.8 A/W at ~ 6.6 µm for a bias of 1 V, where the specific detectivity is [Formula: see text] cmHz1/2/W.

7.
Sci Rep ; 10(1): 6532, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32300114

ABSTRACT

We introduce a high-temperature droplet epitaxy procedure, based on the control of the arsenization dynamics of nanoscale droplets of liquid Ga on GaAs(111)A surfaces. The use of high temperatures for the self-assembly of droplet epitaxy quantum dots solves major issues related to material defects, introduced during the droplet epitaxy fabrication process, which limited its use for single and entangled photon sources for quantum photonics applications. We identify the region in the parameter space which allows quantum dots to self-assemble with the desired emission wavelength and highly symmetric shape while maintaining a high optical quality. The role of the growth parameters during the droplet arsenization is discussed and modeled.

8.
Nanotechnology ; 31(24): 245203, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32106107

ABSTRACT

The fabrication and characterization of an infrared photodetector based on GaAs droplet epitaxy quantum dots embedded in Al0.3Ga0.7As barrier is reported. The high control over dot electronic properties and the high achievable number density allowed by droplet epitaxy technique permitted us to realize a device using a single dot layer in the active region. Moreover, thanks to the independent control over dot height and width, we were able to obtain a very sharp absorption peak in the thermal infrared region (3-8 µm). Low temperature photocurrent spectrum was measured by Fourier spectroscopy, showing a narrow peak at 198 meV (∼6.3 µm) with a full width at half maximum of 25 meV. The observed absorption is in agreement with theoretical prediction based on effective mass approximation of the dot electronic transition.

9.
Sci Rep ; 9(1): 17529, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31772248

ABSTRACT

We demonstrate the growth of low density anti-phase boundaries, crack-free GaAs epilayers, by Molecular Beam Epitaxy on silicon (001) substrates. The method relies on the deposition of thick GaAs on a suspended Ge buffer realized on top of deeply patterned Si substrates by means of a three-temperature procedure for the growth. This approach allows to suppress, at the same time, both threading dislocations and thermal strain in the epilayer and to remove anti-phase boundaries even in absence of substrate tilt. Photoluminescence measurements show the good uniformity and the high optical quality of AlGaAs/GaAs quantum well structures realized on top of such GaAs layer.

10.
Sci Rep ; 9(1): 14520, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31601913

ABSTRACT

A temperature activated crossover between two nucleation regimes is observed in the behavior of Ga droplet nucleation on vicinal GaAs(111)A substrates with a miscut of 2° towards [Formula: see text]. At low temperature (<400 °C) the droplet density dependence on temperature and flux is compatible with droplet nucleation by two-dimensional diffusion. Increasing the temperature, a different regime is observed, whose scaling behavior is compatible with a reduction of the dimensionality of the nucleation regime from two to one dimension. We attribute such behavior to a presence of finite width terraces and a sizeable Ehrlich-Schwöbel barrier at the terrace edge, which hinders adatom diffusion in the direction perpendicular to the steps.

11.
Nat Mater ; 18(8): 799-810, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31086322

ABSTRACT

The long dreamed 'quantum internet' would consist of a network of quantum nodes (solid-state or atomic systems) linked by flying qubits, naturally based on photons, travelling over long distances at the speed of light, with negligible decoherence. A key component is a light source, able to provide single or entangled photon pairs. Among the different platforms, semiconductor quantum dots (QDs) are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips. In the early 1990s two approaches were developed to synthetize self-assembled epitaxial semiconductor QDs, or 'artificial atoms'-namely, the Stranski-Krastanov (SK) and the droplet epitaxy (DE) methods. Because of its robustness and simplicity, the SK method became the workhorse to achieve several breakthroughs in both fundamental and technological areas. The need for specific emission wavelengths or structural and optical properties has nevertheless motivated further research on the DE method and its more recent development, local droplet etching (LDE), as complementary routes to obtain high-quality semiconductor nanostructures. The recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometimes even outperform) conventional SK InGaAs QDs as quantum emitters. We present here a critical survey of the state of the art of DE and LDE, highlighting the advantages and weaknesses, the achievements and challenges that are still open, in view of applications in quantum communication and technology.

12.
Sci Rep ; 8(1): 11278, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30050040

ABSTRACT

The growth dynamics of Ga(In)N semiconductors by Plasma-Assisted Molecular Beam Epitaxy (PAMBE) at low temperatures (T = 450 °C) is here investigated. The presence of droplets at the growth surface strongly affects the adatom incorporation dynamics, making the growth rate a decreasing function of the metal flux impinging on the surface. We explain this phenomenon via a model that considers droplet effects on the incorporation of metal adatoms into the crystal. A relevant role is played by the vapor-liquid-solid growth mode that takes place under the droplets due to nitrogen molecules directly impinging on the droplets. The role of droplets in the growth dynamics here observed and modeled in the case of Nitride semiconductors is general and it can be extended to describe the growth of the material class of binary compounds when droplets are present on the surface.

13.
Nanotechnology ; 29(36): 365602, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-29911655

ABSTRACT

A hybrid metal-semiconductor nanosystem for the generation of THz radiation, based on the fabrication of GaAs quantum molecules-Ga metal nanoparticles complexes through a self assembly approach, is proposed. The role of the growth parameters, the substrate temperature, the Ga and As flux during the quantum dot molecule (QDM) fabrication and the metal nanoparticle alignment are discussed. The tuning of the relative positioning of QDMs and metal nanoparticles is obtained through the careful control of Ga droplet nucleation sites via Ga surface diffusion. The electronic structure of a typical QDM was evaluated on the base of the morphological characterizations performed by atomic force microscopy and cross sectional scanning electron microscopy, and the predicted results confirmed by micro-photoluminescence experiments, showing that the Ga metal nanoparticle-GaAs quantum molecule complexes are suitable for terahertz generation from intraband transition.

14.
Nano Lett ; 18(1): 505-512, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29239186

ABSTRACT

Several semiconductor quantum dot techniques have been investigated for the generation of entangled photon pairs. Among the other techniques, droplet epitaxy enables the control of the shape, size, density, and emission wavelength of the quantum emitters. However, the fraction of the entanglement-ready quantum dots that can be fabricated with this method is still limited to around 5%, and matching the energy of the entangled photons to atomic transitions (a promising route toward quantum networking) remains an outstanding challenge. Here, we overcome these obstacles by introducing a modified approach to droplet epitaxy on a high symmetry (111)A substrate, where the fundamental crystallization step is performed at a significantly higher temperature as compared with previous reports. Our method drastically improves the yield of entanglement-ready photon sources near the emission wavelength of interest, which can be as high as 95% due to the low values of fine structure splitting and radiative lifetime, together with the reduced exciton dephasing offered by the choice of GaAs/AlGaAs materials. The quantum dots are designed to emit in the operating spectral region of Rb-based slow-light media, providing a viable technology for quantum repeater stations.

15.
Struct Dyn ; 4(4): 044034, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28852685

ABSTRACT

Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots-grown by Droplet Epitaxy on AlGaAs-with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.

16.
Nanotechnology ; 28(4): 045605, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-27997367

ABSTRACT

In As atmosphere, we analyzed the crystallization dynamics during post-growth annealing of Ga droplets residing at the top of self-assisted GaAs nanowires grown by molecular beam epitaxy. The final crystallization steps, fundamental to determining the top facet nanowire morphology, proceeded via a balance of Ga crystallization via vapor-liquid-solid and layer-by-layer growth around the droplet, promoted by Ga diffusion out of the droplet perimeter, As desorption, and diffusion dynamics. By controlling As flux and substrate temperature the transformation of Ga droplets into nanowire segments with a top surface flat and parallel to the substrate was achieved, thus opening the possibility to realize atomically sharp vertical heterostructures in III-As self-assisted nanowires through group III exchange.

17.
Nanoscale Res Lett ; 10(1): 930, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26058506

ABSTRACT

We report the study on formation and thermal annealing of InAs quantum dots grown by droplet epitaxy on GaAs (111)A surface. By following the changes in RHEED pattern, we found that InAs quantum dots arsenized at low temperature are lattice matched with GaAs substrate, becoming almost fully relaxed when substrate temperature is increased. Morphological characterizations performed by atomic force microscopy show that annealing process is able to change density and aspect ratio of InAs quantum dots and also to narrow size distribution.

18.
Nano Lett ; 15(6): 3677-83, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25942628

ABSTRACT

We present the fabrication of axial InAs/GaAs nanowire heterostructures on silicon with atomically sharp interfaces by molecular beam epitaxy. Our method exploits the crystallization at low temperature, by As supply, of In droplets deposited on the top of GaAs NWs grown by the self-assisted (self-catalyzed) mode. Extensive characterization based on transmission electron microscopy sets an upper limit for the InAs/GaAs interface thickness within few bilayers (≤1.5 nm). A detailed study of elastic/plastic strain relaxation at the interface is also presented, highlighting the role of nanowire lateral free surfaces.

19.
Nanoscale Res Lett ; 10: 67, 2015.
Article in English | MEDLINE | ID: mdl-25852364

ABSTRACT

Local droplet etching (LDE) utilizes metal droplets during molecular beam epitaxy for the self-assembled drilling of nanoholes into III/V semiconductor surfaces. An essential process during LDE is the removal of the deposited droplet material from its initial position during post-growth annealing. This paper studies the droplet material removal experimentally and discusses the results in terms of a simple model. The first set of experiments demonstrates that the droplet material is removed by detachment of atoms and spreading over the substrate surface. Further experiments establish that droplet etching requires a small arsenic background pressure to inhibit re-attachment of the detached atoms. Surfaces processed under completely minimized As pressure show no hole formation but instead a conservation of the initial droplets. Under consideration of these results, a simple kinetic scaling model of the etching process is proposed that quantitatively reproduces experimental data on the hole depth as a function of the process temperature and deposited amount of droplet material. Furthermore, the depth dependence of the hole side-facet angle is analyzed.

20.
Nano Lett ; 14(11): 6148-54, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25099123

ABSTRACT

Unlike in bulk materials, energy transport in low-dimensional and nanoscale systems may be governed by a coherent "ballistic" behavior of lattice vibrations, the phonons. If dominant, such behavior would determine the mechanism for transport and relaxation in various energy-conversion applications. In order to study this coherent limit, both the spatial and temporal resolutions must be sufficient for the length-time scales involved. Here, we report observation of the lattice dynamics in nanoscale quantum dots of gallium arsenide using ultrafast electron diffraction. By varying the dot size from h = 11 to 46 nm, the length scale effect was examined, together with the temporal change. When the dot size is smaller than the inelastic phonon mean-free path, the energy remains localized in high-energy acoustic modes that travel coherently within the dot. As the dot size increases, an energy dissipation toward low-energy phonons takes place, and the transport becomes diffusive. Because ultrafast diffraction provides the atomic-scale resolution and a sufficiently high time resolution, other nanostructured materials can be studied similarly to elucidate the nature of dynamical energy localization.

SELECTION OF CITATIONS
SEARCH DETAIL
...