Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 11(12): e0166814, 2016.
Article in English | MEDLINE | ID: mdl-27911910

ABSTRACT

Experimental immunization with radiation attenuated sporozoites (RAS) and genetically attenuated sporozoites has proved to be a promising approach for malaria vaccine development. However, parasite biomarkers of growth attenuation and enhanced immune protection in response to radiation remain poorly understood. Here, we report on the effect of an attenuating dose of γ-irradiation (15 krad) on the Plasmodium falciparum sporozoite (PfSPZ) ultrastructure by electron microscopy, growth rate of liver stage P. falciparum in liver cell cultures, and genome-wide transcriptional profile of liver stage parasites by microarray. We find that γ-irradiation treated PfSPZ retained a normal cellular structure except that they were vacuous with a partially disrupted plasma membrane and inner membrane complex. A similar infection rate was observed by γ-irradiation-treated and untreated PfSPZ in human HCO-4 liver cells (0.47% versus 0.49%, respectively) on day 3 post-infection. In the microarray studies, cumulatively, 180 liver stage parasite genes were significantly transcriptionally altered on day 3 and/or 6 post-infection. Among the transcriptionally altered biomarkers, we identified a signature of seven candidate parasite genes that associated with functionally diverse pathways that may regulate radiation induced cell cycle arrest of the parasite within the hepatocyte. A repertoire of 14 genes associated with protein translation is transcriptionally overexpressed within the parasite by radiation. Additionally, 37 genes encode proteins expressed on the cell surface or exported into the host cell, 4 encode membrane associated transporters, and 10 encode proteins related to misfolding and stress-related protein processing. These results have significantly increased the repertoire of novel targets for 1) biomarkers of safety to define proper attenuation, 2) generating genetically attenuated parasite vaccine candidates, and 3) subunit candidate vaccines against liver stage malaria.


Subject(s)
Gamma Rays , Gene Expression Regulation/radiation effects , Liver/metabolism , Malaria Vaccines/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Sporozoites/metabolism , Animals , Anopheles , Biomarkers/metabolism , Cell Line , Female , Humans , Liver/parasitology , Malaria, Falciparum/metabolism , Malaria, Falciparum/prevention & control , Vaccines, Attenuated/metabolism
2.
J Immunol Methods ; 390(1-2): 99-105, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23399449

ABSTRACT

Highly sensitive and reliable assays based on the quantitation of immunologically relevant component(s) in recombinant or whole parasite-based vaccines would facilitate pre-clinical and clinical phases and the monitoring of malaria vaccine deployment. Here we report a laboratory-grade Western Blot assay for quantitative detection of Plasmodium falciparum circumsporozoite protein (PfCSP) in P. falciparum sporozoite (PfSPZ) and in recombinant (rPfCSP) product. This assay is based on the immuno-reactivity of an anti-P. falciparum CSP monoclonal antibody (mAb 2A10) with the NANP-repeat units on PfCSP. The antigen-antibody complex is detected by reaction with a commercially obtained chemiluminescence-linked Immunodetection system. The linear range for detecting the recombinant P. falciparum CSP (rPfCSP) in this assay is 3-12pg (R(2)=0.9399). The range for detecting the day 15 salivary-gland PfSPZ is between 0.0625 and 1 parasite (R(2)=0.9448) and approximately 10.0pg of PfCSP was detected on each sporozoite. The assay was highly reproducible in measuring the PfCSP on PfSPZ. The inter-assay Coefficient of Variation (CV%) was 10.31% while the intra-assay CV% on three different days was 6.05%, 2.03% and 1.42% respectively. These results suggest that this ECL-WB assay is highly sensitive and robust with a low degree of inter-assay and intra-assay variations. To our knowledge, this is the most sensitive immunoassay for the detection of a recombinant or native malarial protein and may have a wider range of applications including the quantification of immunological component(s) in a vaccine formulation, determination of the antigenic integrity in adjuvanted-vaccine and in stability studies. In addition, this assay can be applied to measure the mosquito infectivity in malaria transmission areas and to determine the effects of intervention measures on malaria transmission.


Subject(s)
Blotting, Western/methods , Luminescent Measurements/methods , Malaria, Falciparum/immunology , Protozoan Proteins/immunology , Algorithms , Humans , Kinetics , Malaria Vaccines/immunology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Recombinant Proteins/immunology , Reproducibility of Results , Sensitivity and Specificity , Sporozoites/immunology , Sporozoites/metabolism
3.
BMC Int Health Hum Rights ; 11: 9, 2011 Jun 22.
Article in English | MEDLINE | ID: mdl-21696629

ABSTRACT

BACKGROUND: The geographical congruency in distribution of helminths and Plasmodium falciparum makes polyparasitism a common phenomenon in Sub Saharan Africa. The devastating effects of helminths-Plasmodium co-infections on primary school health have raised global interest for integrated control. However little is known on the feasibility, timing and efficacy of integrated helminths-Plasmodium control strategies. A study was conducted in Zimbabwe to evaluate the efficacy of repeated combined school based antihelminthic and prompt malaria treatment. METHODS: A cohort of primary schoolchildren (5-17 years) received combined Praziquantel, albendazole treatment at baseline, and again during 6, 12 and 33 months follow up surveys and sustained prompt malaria treatment. Sustained prompt malaria treatment was carried out throughout the study period. Children's infection status with helminths, Plasmodium and helminths-Plasmodium co-infections was determined by parasitological examinations at baseline and at each treatment point. The prevalence of S. haematobium, S. mansoni, STH, malaria, helminths-Plasmodium co-infections and helminths infection intensities before and after treatment were analysed. RESULTS: Longitudinal data showed that two rounds of combined Praziquantel and albendazole treatment for schistosomiasis and STHs at 6 monthly intervals and sustained prompt malaria treatment significantly reduced the overall prevalence of S. haematobium, S. mansoni, hookworms and P. falciparum infection in primary schoolchildren by 73.5%, 70.8%, 67.3% and 58.8% respectively (p < 0.001, p < 0.001, p < 0.001, p < 0.001 respectively). More importantly, the prevalence of STH + schistosomes, P. f + schistosomes, and P. f + STHs + schistosomes co-infections were reduced by 68.0%, 84.2%, and 90.7%, respectively. The absence of anti-helminthic treatment between the 12 mth and 33 mth follow-up surveys resulted in the sharp increase in STHs + schistosomes co-infection from 3.3% at 12 months follow up survey to 10.7%, slightly more than the baseline level (10.3%) while other co-infection combinations remained significantly low. The overall prevalence of heavy S. haematobium, S. mansoni and hookworms infection intensities were significantly reduced from: 17.9-22.4% to 2.6-5.1%, 1.6-3.3% to 0.0% and 0.0-0.7% to 0.0% respectively. CONCLUSION: Biannual Integrated school based antihelminthic and sustained prompt malaria treatment has a potential to reduce the burden of helminths-plasmodium co-infections in primary school children. In areas of stable malaria transmission, active case finding is recommended to track and treat asymptomatic malaria cases as these may sustain transmission in the community.

4.
BMC Infect Dis ; 11: 169, 2011 Jun 13.
Article in English | MEDLINE | ID: mdl-21668948

ABSTRACT

BACKGROUND: Helminth infection rates in grade three children are used as proxy indicators of community infection status and to guide treatment strategies in endemic areas. However knowledge, attitudes and practices (KAP) of this target age group (8-10 years) in relation to schistosomiasis, soil transmitted helminthiasis (STHs) and malaria is not known at a time when integrated plasmodium - helminth control strategies are being advocated. This study sought to assess KAP of grade 3 children in relation to schistosomiasis, STHs and malaria in order to establish an effective school based health education for disease transmission control. METHODS: Grade 3 children (n = 172) attending four randomly selected primary schools (one in rural and 3 in the commercial farming areas) in Zimbabwe were interviewed using a pre-tested interviewer administered questionnaire. The urine filtration technique was used to determine S. haematobium infection status. Infection with S. mansoni and STHs was determined using a combination of results from the Kato Katz and formol ether concentration techniques. P. falciparum was diagnosed by examination of Giemsa stained thick blood smears. RESULTS: It was observed that 32.0%, 19.2% and 4.1% of the respondents had correct knowledge about the causes of schistosomiasis, malaria and STHs, respectively, whilst 22.1%, 19.2% and 5.8% knew correct measures to control schistosomiasis, malaria and STHs. Sixty-two percent and 44.8% did not use soap to wash hands after toilet and before eating food respectively, whilst 33.1% never wore shoes. There were no functional water points and soap for hand washing after toilet at all schools. There was a high prevalence distribution of all parasites investigated in this study at Msapa primary school - S. haematobium (77.8%), S. mansoni (33.3%) hookworms (29.6%) and P. falciparum (48.1%). Reports that participant had suffered from schistosomiasis and malaria before were significant predictors of these diseases (p = 0.001 and p = 0.042, respectively). Report that participant had blood in urine on the day of examination was a significant predictor of schistosomiasis (p = 0.045). CONCLUSION: There is a critical need for targeting health messages through schools in order to reach the most susceptible schoolchildren. This will empower the schoolchildren with the basic knowledge and skills ultimately protecting them from acquiring schistosomiasis, STHs and malaria.


Subject(s)
Ancylostomiasis/prevention & control , Health Knowledge, Attitudes, Practice , Malaria, Falciparum/prevention & control , Schistosomiasis/prevention & control , Students , Adolescent , Ancylostoma/growth & development , Ancylostomiasis/epidemiology , Animals , Chi-Square Distribution , Child , Child, Preschool , Cross-Sectional Studies , Endemic Diseases , Hand Disinfection , Humans , Logistic Models , Malaria, Falciparum/epidemiology , Male , Plasmodium falciparum/growth & development , Prevalence , Risk Factors , Schistosoma haematobium/growth & development , Schistosoma mansoni/growth & development , Schistosomiasis/epidemiology , Schools , Surveys and Questionnaires , Water Supply , Zimbabwe/epidemiology
5.
PLoS Negl Trop Dis ; 4(11): e882, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-21085468

ABSTRACT

A group of children aged 6-17 years was recruited and followed up for 12 months to study the impact of schistosome infection on malaria parasite prevalence, density, distribution and anemia. Levels of cytokines, malaria specific antibodies in plasma and parasite growth inhibition capacities were assessed. Baseline results suggested an increased prevalence of malaria parasites in children co-infected with schistosomiasis (31%) compared to children infected with malaria only (25%) (p = 0.064). Moreover, children co-infected with schistosomes and malaria had higher sexual stage geometric mean malaria parasite density (189 gametocytes/µl) than children infected with malaria only (73/µl gametocytes) (p = 0.043). In addition, a larger percentage of co-infected children (57%) had gametocytes as observed by microscopy compared to the malaria only infected children (36%) (p = 0.06). There was no difference between the two groups in terms of the prevalence of anemia, which was approximately 64% in both groups (p = 0.9). Plasma from malaria-infected children exhibited higher malaria antibody activity compared to the controls (p = 0.001) but was not different between malaria and schistosome plus malaria infected groups (p = 0.44) and malaria parasite growth inhibition activity at baseline was higher in the malaria-only infected group of children than in the co-infected group though not reaching statistical significance (p = 0.5). Higher prevalence and higher mean gametocyte density in the peripheral blood may have implications in malaria transmission dynamics during co-infection with helminths.


Subject(s)
Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Schistosoma/immunology , Schistosomiasis/immunology , Adolescent , Animals , Antibodies, Helminth/immunology , Antibodies, Protozoan/immunology , Child , Cohort Studies , Female , Humans , Malaria, Falciparum/complications , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Plasmodium falciparum/physiology , Schistosoma/physiology , Schistosomiasis/complications , Schistosomiasis/epidemiology , Schistosomiasis/parasitology , Zimbabwe/epidemiology
6.
Exp Parasitol ; 122(3): 254-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19366621

ABSTRACT

Plasmodium yoelii and Schistosoma mansoni co-infections were studied in female BALB/c mice aged 4-6 weeks to determine the effect of time and stage of concomitant infections on malaria disease outcome. Patent S. mansoni infection in BALB/c mice increased malaria peak parasitemia and caused death from an otherwise non-lethal, self-resolving P. yoelii malaria infection. Exacerbation of malaria parasitemia occurred during both pre-patent and patent S. mansoni infection resulting in a delay of 4-8 days in malaria parasite resolution in co-infected mice. Praziquantel administered to mice with patent schistosome infection protected from fatal outcome during co-infection. However, this treatment did not completely clear the worm infestation, nor did it reduce the peak malaria parasitemia reached, which was nonetheless resolved completely. Hepatosplenomegaly was more marked in schistosome and malaria co-infected mice compared to either infection separately. The results suggest a complex relationship between schistosome co-infection and malaria disease outcome in which the timing of malaria infection in relation to schistosome acquisition is critical to disease outcome and pathology.


Subject(s)
Malaria/complications , Plasmodium yoelii , Schistosomiasis mansoni/complications , Anemia/etiology , Animals , Anthelmintics/therapeutic use , Disease Models, Animal , Female , Hematocrit , Hepatomegaly , Malaria/drug therapy , Malaria/mortality , Mice , Mice, Inbred BALB C , Parasitemia/parasitology , Praziquantel/therapeutic use , Schistosomiasis mansoni/drug therapy , Splenomegaly , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...