Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cardiol ; 47(2): e24239, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38402566

ABSTRACT

BACKGROUND: Heart failure (HF) is a global problem, affecting more than 26 million people worldwide. This study evaluated the performance of 10 machine learning (ML) algorithms and chose the best algorithm to predict mortality and readmission of HF patients by using The Fasa Registry on Systolic HF (FaRSH) database. HYPOTHESIS: ML algorithms may better identify patients at increased risk of HF readmission or death with demographic and clinical data. METHODS: Through comprehensive evaluation, the best-performing model was used for prediction. Finally, all the trained models were applied to the test data, which included 20% of the total data. For the final evaluation and comparison of the models, five metrics were used: accuracy, F1-score, sensitivity, specificity and Area Under Curve (AUC). RESULTS: Ten ML algorithms were evaluated. The CatBoost (CAT) algorithm uses a series of decision tree models to create a nonlinear model, and this CAT algorithm performed the best of the 10 models studied. According to the three final outcomes from this study, which involved 2488 participants, 366 (14.7%) of the patients were readmitted to the hospital, 97 (3.9%) of the patients died within 1 month of the follow-up, and 342 (13.7%) of the patients died within 1 year of the follow-up. The most significant variables to predict the events were length of stay in the hospital, hemoglobin level, and family history of MI. CONCLUSIONS: The ML-based risk stratification tool was able to assess the risk of 5-year all-cause mortality and readmission in patients with HF. ML could provide an explicit explanation of individualized risk prediction and give physicians an intuitive understanding of the influence of critical features in the model.


Subject(s)
Heart Failure , Patient Readmission , Humans , Retrospective Studies , Heart Failure/diagnosis , Heart Failure/therapy , Machine Learning , Risk Factors
3.
Heart Rhythm ; 20(12): 1699-1705, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37640127

ABSTRACT

BACKGROUND: Among patients with ischemic cardiomyopathy (ICM) and nonischemic cardiomyopathy (NICM), myocardial fibrosis is associated with an increased risk for ventricular arrhythmia (VA). Growing evidence suggests that myocardial fat contributes to ventricular arrhythmogenesis. However, little is known about the volume and distribution of epicardial adipose tissue and intramyocardial fat and their relationship with VAs. OBJECTIVE: The purpose of this study was to assess the association of contrast-enhanced computed tomography (CE-CT)-derived left ventricular (LV) tissue heterogeneity, epicardial adipose tissue volume, and intramyocardial fat volume with the risk of VA in ICM and NICM patients. METHODS: Patients enrolled in the PROSE-ICD registry who underwent CE-CT were included. Intramyocardial fat volume (voxels between -180 and -5 Hounsfield units [HU]), epicardial adipose tissue volume (between -200 and -50 HU), and LV tissue heterogeneity were calculated. The primary endpoint was appropriate ICD shocks or sudden arrhythmic death. RESULTS: Among 98 patients (47 ICM, 51 NICM), LV tissue heterogeneity was associated with VA (odds ratio [OR] 1.10; P = .01), particularly in the ICM cohort. In the NICM subgroup, epicardial adipose tissue and intramyocardial fat volume were associated with VA (OR 1.11, P = .01; and OR = 1.21, P = .01, respectively) but not in the ICM patients (OR 0.92, P =.22; and OR = 0.96, P =.19, respectively). CONCLUSION: In ICM patients, increased fat distribution heterogeneity is associated with VA. In NICM patients, an increased volume of intramyocardial fat and epicardial adipose tissue is associated with a higher risk for VA. Our findings suggest that fat's contribution to VAs depends on the underlying substrate.


Subject(s)
Cardiomyopathies , Myocardial Ischemia , Tachycardia, Ventricular , Humans , Arrhythmias, Cardiac , Cardiomyopathies/etiology , Cardiomyopathies/complications , Myocardial Ischemia/complications , Myocardium
4.
Am J Transplant ; 23(6): 727-735, 2023 06.
Article in English | MEDLINE | ID: mdl-36870390

ABSTRACT

In heart transplantation, the use of biomarkers to detect the risk of rejection has been evolving. In this setting, it is becoming less clear as to what is the most reliable test or combination of tests to detect rejection and assess the state of the alloimmune response. Therefore, a virtual expert panel was organized in heart and kidney transplantation to evaluate emerging diagnostics and how they may be best utilized to monitor and manage transplant patients. This manuscript covers the heart content of the conference and is a work product of the American Society of Transplantation's Thoracic and Critical Care Community of Practice. This paper reviews currently available and emerging diagnostic assays and defines the unmet needs for biomarkers in heart transplantation. Highlights of the in-depth discussions among conference participants that led to development of consensus statements are included. This conference should serve as a platform to further build consensus within the heart transplant community regarding the optimal framework to implement biomarkers into management protocols and to improve biomarker development, validation and clinical utility. Ultimately, these biomarkers and novel diagnostics should improve outcomes and optimize quality of life for our transplant patients.


Subject(s)
Heart Transplantation , Kidney Transplantation , Humans , Quality of Life , Heart Transplantation/adverse effects , Biomarkers , Graft Rejection/diagnosis , Graft Rejection/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...