Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Drug Deliv Rev ; 207: 115217, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423362

ABSTRACT

The development of innovative products for treating acute and chronic wounds has become a significant topic in healthcare, resulting in numerous products and innovations over time. The growing number of patients with comorbidities and chronic diseases, which may significantly alter, delay, or inhibit normal wound healing, has introduced considerable new challenges into the wound management scenario. Researchers in academia have quickly identified promising solutions, and many advanced wound healing materials have recently been designed; however, their successful translation to the market remains highly complex and unlikely without the contribution of industry experts. This review article condenses the main aspects of wound healing applications that will serve as a practical guide for researchers working in academia and industry devoted to designing, evaluating, validating, and translating polymer wound care materials to the market. The article highlights the current challenges in wound management, describes the state-of-the-art products already on the market and trending polymer materials, describes the regulation pathways for approval, discusses current wound healing models, and offers a perspective on new technologies that could soon reach consumers. We envision that this comprehensive review will significantly contribute to highlighting the importance of networking and exchanges between academia and healthcare companies. Only through the joint of these two actors, where innovation, manufacturing, regulatory insights, and financial resources act in harmony, can wound care products be developed efficiently to reach patients quickly and affordably.


Subject(s)
Polymers , Wound Healing , Humans , Polymers/pharmacology
2.
Int J Biol Macromol ; 251: 126173, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37558027

ABSTRACT

This research aims to introduce a new wound dressing with antibacterial and anti-inflammatory properties made from chitosan and copper-containing Janus nanoparticles (JNPs). The JNPs were synthesized by attaching copper to PDA nanospheres, which were then embedded in Chitosan at different concentrations. The resulting spherical JNPs had a mean size of 208 ± 96 nm, and EDX mapping showed successful adhesion of Cu2+ ions to PDA nanospheres with a total Cu2+ content of 16.5 wt%. The samples exhibited interconnected porous structures, increasing JNPs concentration resulting in larger pore size and higher porosity. The addition of JNPs to 10 % (Ch-JNP 10) resulted in the highest strength, young modulus, and crystallinity, while a reverse trend was observed at higher JNPs content. JNPs improve the antibacterial activity of chitosan-based dressing, especially against E. coli. All samples were biocompatible and did not exhibit any cytotoxic effects. Ch-JNP10 had higher cellular density, confluency, and collagen secretion than other samples. The in vivo study demonstrated that Ch-JNP10 induced epithelialization and oriented collagen fiber formation while reducing inflammation. Overall, Ch-JNP10 may be a potential wound dressing for chronic wounds.

3.
Biomed Mater ; 18(5)2023 08 04.
Article in English | MEDLINE | ID: mdl-37478841

ABSTRACT

The field of neural tissue engineering has undergone a revolution due to advancements in three-dimensional (3D) printing technology. This technology now enables the creation of intricate neural tissue constructs with precise geometries, topologies, and mechanical properties. Currently, there are various 3D printing techniques available, such as stereolithography and digital light processing, and a wide range of materials can be utilized, including hydrogels, biopolymers, and synthetic materials. Furthermore, the development of four-dimensional (4D) printing has gained traction, allowing for the fabrication of structures that can change shape over time using techniques such as shape-memory polymers. These innovations have the potential to facilitate neural regeneration, drug screening, disease modeling, and hold tremendous promise for personalized diagnostics, precise therapeutic strategies against brain cancers. This review paper provides a comprehensive overview of the current state-of-the-art techniques and materials for 3D printing in neural tissue engineering and brain cancer. It focuses on the exciting possibilities that lie ahead, including the emerging field of 4D printing. Additionally, the paper discusses the potential applications of five-dimensional and six-dimensional printing, which integrate time and biological functions into the printing process, in the fields of neuroscience.


Subject(s)
Brain Neoplasms , Tissue Engineering , Humans , Tissue Engineering/methods , Biopolymers , Printing, Three-Dimensional , Stereolithography , Brain Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...