Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(15): 10768-10775, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38572343

ABSTRACT

Nickel foam modified by hollow sphere NiCo2O4 particles was successfully prepared via a hydrothermal method using nanosphere SiO2 particles as the hard template for the hollow structure. Characterisation using SEM-EDX and TEM confirmed the structure as multiwalled hollow spheres with an average size of 270 nm, while characterisation using SEM, XRD, and XPS confirmed that the NiCo2O4 particles were attached on the surface of the nickel foam. BET analysis showed that the surface area of the synthesized NiCo2O4@Ni foam was nearly three times higher compared to that of the unmodified Ni foam. Investigation of the NiCo2O4-modified nickel foam as an electrode for the detection of glucose in sodium hydroxide solution showed high linearity of the anodic currents (R2 = 0.99) in the concentration range of 0-2.5 µM with sensitivity of 0.060 mA µM-1 and an estimated limit of detection of 0.060 µM. Excellent stability of the current response was also obtained with a relative standard deviation of 1.51% (n = 10). Furthermore, the developed sensor demonstrates strong applicability for glucose detection in real samples of human blood plasma, making it highly suitable for practical use. The results indicate that the material is promising for the further development of nickel-based sensors.

2.
RSC Adv ; 13(32): 22061-22069, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37483677

ABSTRACT

Boron-doped diamond (BDD) was modified with copper and gold particles by using an electrodeposition technique to improve its catalytic effect on CO2 reduction in a flow system. The system was optimized based on the production of formic acid by the electroreduction process. At the optimum applied potential of -1.0 V (vs. Ag/AgCl) and flow rate of 50 mL min-1, the copper-gold-modified BDD produced formic acid at the highest rate of 4.88 mol m-2 s-1 and a concentration of 15.93 ppm, while acetic acid was produced with a rate of 0.11 mol m-2 s-1 and a concentration of 0.47 ppm. An advantage of the flow system using the modified BDD was that it was found to accelerate the production rate of acetic acid as well as to decrease the reduction potential of CO2. Furthermore, better stability of the metal particles was observed when using mixed copper-gold modification on the BDD surface than single modification by either metal. The results indicated that a flow system is suitable to be employed for electroreduction of CO2 using the bimetal-modified BDD electrodes, especially with copper and gold as the modifying particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...