Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(38): 34795-34804, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37779961

ABSTRACT

In the present work, a procedure based on a dispersive medium for carbon black (CB) isolation from soil samples for analysis was proposed for the first time. Polymeric and biological dispersants and a sequential use of both dispersants were assayed. Asymmetrical flow field flow fractionation with dynamic light scattering detector (AF4-DLS) and sedimentation field flow fractionation with multi-angle light scattering detector (SdF3-MALS) were used for CB quantitation and characterization in the achieved dispersions. Soil samples contaminated with CB were processed, and CB isolation depended on the solid size distribution and composition and dispersant nature. More quantitative isolations were achieved for the four soils treated by the biological dispersant. As the organic matter percentage is higher in soil, the CB isolation was better, varying between 75 and 99% with standard deviation (s) ⩽ 2% for all soils. A soil contaminated with a CB-based pigment paste was analyzed, achieving (99 ± 2)% expressed as expanded uncertainty (K = 2) of dispersive isolation by the biological dispersant, and the sampling was scaled to 250 g of soil with positive results. The procedure was completed by CB recovery to obtain a solid residue able to be reused if necessary. For the filter-aided recovery step, different membranes (fiberglass, nylon, and Teflon) with a pore size between 0.1 and 5 µm were tested. The quantitation of the CB retained in the filter was measured by diffuse reflectance spectroscopy. Teflon (0.10 µm) provided better results for CB recovery, and its re-dispersion was also studied with suitable results. Determination of CB from the filters by diffuse reflectance spectrometry provided the same results than AF4 for CB dispersions.

2.
Anal Bioanal Chem ; 415(11): 2121-2132, 2023 May.
Article in English | MEDLINE | ID: mdl-36829041

ABSTRACT

Carbon black nanomaterial (CB-NM), as an industrial product with a large number of applications, poses a high risk of exposure, and its impact on health needs to be assessed. The most common testing platform for engineered (E)NMs is in vitro toxicity assessment, which requires prior ENM dispersion, stabilization, and characterization in cell culture media. Here, asymmetric flow field-flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series was used for the study of CB dispersions in cell culture media, optimizing instrumental variables and working conditions. It was possible to disperse CB in a non-ionic surfactant aqueous solution due to the steric effect provided by surfactant molecules attached on the CB surface which prevented agglomeration. The protection provided by the surfactant or by culture media alone was insufficient to ensure good dispersion stability needed for carrying out in vitro toxicity studies. On the other hand, cell culture media in combination with the surfactant improved dispersion stability considerably, enabling the generation of shorter particles and a more favourable zeta potential magnitude, leading to greater stability due to electrostatic repulsion. It was demonstrated that the presence of amino acids in the culture media improved the monodisperse nature and stability of the CB dispersions, and resulted in a turn towards more negative zeta potential values when the pH was above the amino acid isoelectric point (IEP). Culture media used in real cell culture scenarios were also tested, and in vitro toxicity assays were developed optimizing the compatible amount of surfactant.


Subject(s)
Fractionation, Field Flow , Nanostructures , Pulmonary Surfactants , Cell Culture Techniques , Culture Media , Fractionation, Field Flow/methods , Nanostructures/toxicity , Nanostructures/chemistry , Particle Size , Soot/toxicity , Surface-Active Agents/toxicity , Isoelectric Point
3.
ACS Omega ; 6(47): 31822-31830, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34870005

ABSTRACT

Characterization of carbon black (CB) nanomaterials is required in industrial and research areas. Hence, in this study, asymmetrical flow field flow fractionation coupled to UV-vis and DLS detectors in series (AF4-UV-vis-DLS) was studied to evaluate the CB dispersion behavior in polymeric and biological dispersants, given the relevance of these media in practical applications. Under the experimental conditions, the results indicated that polymeric and biological dispersions showed size distributions with hydrodynamic diameters of 404 and 175 nm, respectively, for a particle core diameter of 40 nm. The polymeric dispersant provided lower stability as a function of time than that achieved by the biological dispersant. AF4 allowed separation of different core-sized CB (40, 69, and 72 nm) according to their hydrodynamic size using cross-flow rates of 0.5 mL·min-1 and 1 mL·min-1 for polymeric and biological dispersants, respectively. The dilution of the polymeric dispersion with different real water matrices produced a dramatic loss of dispersion stability, this effect being negligible in the case of biological dispersions.

4.
Nanomaterials (Basel) ; 11(4)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916459

ABSTRACT

Asymmetrical flow field-flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series, was tested for stability studies of dispersions of citrate-capped silver nanoparticles (AgNPs) in several water matrices. The main goal is to provide knowledge to understand their possible behavior in the environment for short times since mixturing (up to 180 min). Ultrapure (UPW), bottled (BW1, BW2), tap (TW), transitional (TrW) and sea water (SW) matrices were assayed. Observations were compatible with the aggregation of AgNPs, a change in the plasmon band and a size growth with time were done. Fractograms showed different evolution fingerprints in the function of the waters and batches. The aggregation rate order was BW2, SW, TrW, BW1 and TW, being BW2 the lowest and TW the highest. NP aggregation can be induced by increasing the salt concentration of the medium, however transitional and sea waters did not follow the rule. Both matrices presented a lower aggregation rate in comparison with other aqueous matrices with much lower ionic strength (BW1 and TW), which can be explained by the potential presence of dissolved organic matter and/or the high concentration of halides providing their stabilization and passivation, respectively. AF4 provides relevant information with respect to static DLS and UV-Vis Spectroscopy showing that at least two populations of aggregates with different sizes between them, depending on both, the mixture time for a given matrix and type of water matrix for the same time.

5.
Nanomaterials (Basel) ; 10(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927649

ABSTRACT

Among different nanomaterials, gold and silver nanoparticles (AuNPs and AgNPs) have become useful tools for a wide variety of applications in general, and particularly for plasmonic assays. Particle size and stability analysis are key elements for their practical applications since the NPs properties depend on these parameters. Hence, in the present work, asymmetrical flow field flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series, has been evaluated for stability studies of citrate-capped AuNPs and AgNPs aqueous dispersions. First, experimental parameters, such as mobile phase or cross-flow rate were optimized. Sodium azide to pH 7 for AuNPs and pH 9.2 for AgNPs were selected as the optimum mobile phase. The analytical response of bulk dispersions of AuNPs (20, 40, 60 and 80 nm) and AgNPs (20, 40 and 60 nm) and their dilutions have been studied. Fractograms showed a decrease on the absorbance signal in diluted dispersions as a function of time and particle size for the diluted dispersions that can be explained by dissolution in diluted dispersion since hydrodynamic diameter was constant. The results indicated that the dependence of the signal with time was more intense for AgNPs than for AuNPs, which can be correlated with its lower stability. These findings should be considered when plasmonic assays are realized. Here, assays involving non-oxidant acidic acids as use cases, were tested for several batches of NPs and considerations about their stability and operability stablished.

SELECTION OF CITATIONS
SEARCH DETAIL
...