Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 29(1): 1081-1090, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36155444

ABSTRACT

The electrical power grid is a critical infrastructure, with disruptions in transmission having severe repercussions on daily activities, across multiple sectors. To identify, prevent, and mitigate such events, power grids are being refurbished as 'smart' systems that include the widespread deployment of GPS-enabled phasor measurement units (PMUs). PMUs provide fast, precise, and time-synchronized measurements of voltage and current, enabling real-time wide-area monitoring and control. However, the potential benefits of PMUs, for analyzing grid events like abnormal power oscillations and load fluctuations, are hindered by the fact that these sensors produce large, concurrent volumes of noisy data. In this paper, we describe working with power grid engineers to investigate how this problem can be addressed from a visual analytics perspective. As a result, we have developed PMU Tracker, an event localization tool that supports power grid operators in visually analyzing and identifying power grid events and tracking their propagation through the power grid's network. As a part of the PMU Tracker interface, we develop a novel visualization technique which we term an epicentric cluster dendrogram, which allows operators to analyze the effects of an event as it propagates outwards from a source location. We robustly validate PMU Tracker with: (1) a usage scenario demonstrating how PMU Tracker can be used to analyze anomalous grid events, and (2) case studies with power grid operators using a real-world interconnection dataset. Our results indicate that PMU Tracker effectively supports the analysis of power grid events; we also demonstrate and discuss how PMU Tracker's visual analytics approach can be generalized to other domains composed of time-varying networks with epicentric event characteristics.

2.
IEEE Control Syst Lett ; 6: 1244-1249, 2022.
Article in English | MEDLINE | ID: mdl-35754939

ABSTRACT

This letter studies a topology identification problem for an electric distribution grid using sign patterns of the inverse covariance matrix of bus voltage magnitudes and angles, while accounting for hidden buses. Assuming the grid topology is sparse and the number of hidden buses are fewer than those of the observed buses, we express the observed voltages inverse covariance matrix as the sum of three structured matrices: sparse matrix, low-rank matrix with sparse factors, and low-rank matrix. Using the sign patterns of the first two of these matrices, we develop an algorithm to identify the topology of a distribution grid with a minimum cycle length greater than three. To estimate the structured matrices from the empirical inverse covariance matrix, we formulate a novel convex optimization problem with appropriate sparsity and structured norm constraints and solve it using an alternating minimization method. We validate the proposed algorithm's performance on a modified IEEE 33 bus system.

3.
IEEE Comput Graph Appl ; 42(6): 84-95, 2022.
Article in English | MEDLINE | ID: mdl-35486557

ABSTRACT

Electric transmission power grids are being revamped with the widespread deployment of GPS-enabled phasor measurement units (PMUs) for real-time wide-area monitoring and control via precise, time-synchronized measurements of voltage and current. Large, concurrently produced volumes of noisy data hinder PMU usability, particularly for the analysis of power oscillation and load fluctuation events in the grid. We examine visualization challenges for events in the electric power grid and develop PMUVis, a visualization platform that supports scalable analysis of grid network topology and anomalous events in near time. PMUVis incorporates a novel FFT-based approach over raw and temporally aggregated data to examine oscillation event propagation through the grid network. We validate PMUVis with expert reviews and a case study and discuss how visualization can be leveraged to enhance real-time spatiotemporal grid analysis by advancing operator capabilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...