Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 29(7)2017 Feb.
Article in English | MEDLINE | ID: mdl-27918114

ABSTRACT

Arsenic-free drinking water, independent of electrical power and piped water supply, is possible only through advanced and affordable materials with large uptake capacities. Confined metastable 2-line ferrihydrite, stable at ambient temperature, shows continuous arsenic uptake in the presence of other complex species in natural drinking water and an affordable water-purification device is made using the same.

2.
Proc Natl Acad Sci U S A ; 110(21): 8459-64, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23650396

ABSTRACT

Creation of affordable materials for constant release of silver ions in water is one of the most promising ways to provide microbially safe drinking water for all. Combining the capacity of diverse nanocomposites to scavenge toxic species such as arsenic, lead, and other contaminants along with the above capability can result in affordable, all-inclusive drinking water purifiers that can function without electricity. The critical problem in achieving this is the synthesis of stable materials that can release silver ions continuously in the presence of complex species usually present in drinking water that deposit and cause scaling on nanomaterial surfaces. Here we show that such constant release materials can be synthesized in a simple and effective fashion in water itself without the use of electrical power. The nanocomposite exhibits river sand-like properties, such as higher shear strength in loose and wet forms. These materials have been used to develop an affordable water purifier to deliver clean drinking water at US $2.5/y per family. The ability to prepare nanostructured compositions at near ambient temperature has wide relevance for adsorption-based water purification.


Subject(s)
Biopolymers/chemistry , Drinking Water/chemistry , Nanocomposites/chemistry , Water Purification/methods , Nanocomposites/economics , Silver/chemistry , Water Purification/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...