Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Deliv Transl Res ; 12(10): 2359-2384, 2022 10.
Article in English | MEDLINE | ID: mdl-34845678

ABSTRACT

For the past few years, there has been a surge in the use of nutraceuticals. The global nutraceuticals market in 2020 was USD 417.66 billion, and the market value is expected to increase by 8.9% compound annual growth rate from 2020 to 2028. This is because nutraceuticals are used to treat and prevent various diseases such as cancer, skin disorders, gastrointestinal, ophthalmic, diabetes, obesity, and central nervous system-related diseases. Nutritious food provides the required amount of nutrition to the human body through diet, whereas most of the bioactive agents present in the nutrients are highly lipophilic, with low aqueous solubility leading to poor dissolution and oral bioavailability. Also, the nutraceuticals like curcumin, carotenoids, anthocyanins, omega-3 fatty acids, vitamins C, vitamin B12, and quercetin have limitations such as poor solubility, chemical instability, bitter taste, and an unpleasant odor. Additionally, the presence of gastrointestinal (GIT) membrane barriers, varied pH, and reaction with GIT enzymes cause the degradation of some of the nutraceuticals. Nanotechnology-based nutrient delivery systems can be used to improve oral bioavailability by increasing nutraceutical stability in foods and GIT, increasing nutraceutical solubility in intestinal fluids, and decreasing first-pass metabolism in the gut and liver. This article has compiled the properties and applications of various nanocarriers such as polymeric nanoparticles, micelles, liposomes, niosomes, solid lipid nanocarriers, nanostructured lipid carrier, microemulsion, nanoemulsion, dendrimers in organic nanoparticles, and nanocomposites for effective delivery of bioactive molecules.


Subject(s)
Anthocyanins , Nanoparticles , Biological Availability , Drug Delivery Systems , Humans , Lipids/chemistry , Liposomes , Nutrients
2.
Dermatol Ther ; 33(6): e13905, 2020 11.
Article in English | MEDLINE | ID: mdl-32588940

ABSTRACT

The incidences of fungal infections have greatly increased over the past few years, particularly in humid and industrialized areas. The severity of such infections ranges from being asymptomatic-mild to potentially life-threatening systemic infections. There are limited classes of drugs that are approved for the treatment of such infections like polyenes, azoles, and echinocandins. Some fungi have developed resistance to these drugs. Therefore, to counter drug resistance, intensive large scale studies on novel targeting strategies and formulations are being conducted, which have gained impetus lately. Conventional formulations have limitations such as higher doses, frequent dosing, and several side effects. Such limiting factors have paved the path for the emergence of nanotechnology and its applications. This further gave formulation scientists the possibility of encapsulating the existing potential drug moieties into nanocarriers, which when loaded into gels or creams provided prolonged release and improved permeation, thus giving on-target effect. This review thus discusses the newer targeting strategies and the role of nanocarriers that could be administered topically for the treatment of various fungal infections. Furthermore, this approach opens newer avenues for continued and sustained research in pharmaceuticals with much more effective outcomes.


Subject(s)
Antifungal Agents , Mycoses , Antifungal Agents/adverse effects , Azoles , Echinocandins , Fungi , Humans , Mycoses/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...