Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Adv Mater ; 36(23): e2310823, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38421219

ABSTRACT

Metal silicide thin films and nanostructures typically employed in electronics have recently gained significant attention in battery technology, where they are used as active or inactive materials. However, unlike thin films, the science behind the evolution of silicide nanostructures, especially 1D nanowires (NWs), is a key missing aspect. CuxSiy nanostructures synthesized by solvent vapor growth technique are studied as a model system to gain insights into metal silicide formation. The temperature-dependent phase evolution of CuxSiy structures proceeds from Cu>Cu0.83Si0.17>Cu5Si>Cu15Si4. The role of Cu diffusion kinetics on the morphological progression of Cu silicides is studied, revealing that the growth of 1D metal silicide NWs proceeds through an in situ formed, Cu seed-mediated, self-catalytic process. The different CuxSiy morphologies synthesized are utilized as structured current collectors for K-ion battery anodes. Sb deposited by thermal evaporation upon Cu15Si4 tripod NWs and cube architectures exhibit reversible alloying capacities of 477.3 and 477.6 mAh g-1 at a C/5 rate. Furthermore, Sb deposited Cu15Si4 tripod NWs anode tested in Li-ion and Na-ion batteries demonstrate reversible capacities of ≈518 and 495 mAh g-1.

3.
Nano Lett ; 22(24): 10120-10127, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36472631

ABSTRACT

We report the formation of an intermediate lamellar Cu-thiolate complex, and tuning its relative stability using alkylphosphonic acids are crucial to enabling controlled heteronucleation to form Bi(Cu2-xS)n heterostructures with a tunable number of Cu2-xS stems on a Bi core. The denticity of the phosphonic acid group, concentration, and chain length of alkylphosphonic acids are critical factors determining the stability of the Cu-thiolate complex. Increasing the stability of the Cu-thiolate results in single Cu2-xS stem formation, and decreased stability of the Cu-thiolate complex increases the degree of heteronucleation to form multiple Cu2-xS stems on the Bi core. Spatially separated multiple Cu2-xS stems transform into a support network to hold a fragmented Bi core when used as an anode in a K-ion battery, leading to a more stable cycling performance showing a specific capacity of ∼170 mAh·g-1 after 200 cycles compared to ∼111 mAh·g-1 for Bi-Cu2-xS single-stem heterostructures.


Subject(s)
Nanoparticles , Ligands , Cations , Electrodes , Potassium
SELECTION OF CITATIONS
SEARCH DETAIL
...